Home
Class 12
MATHS
" (ii) If "y^(x)=e^(y-x)," prove that "(...

" (ii) If "y^(x)=e^(y-x)," prove that "(dy)/(dx)=((1+log y)^(2))/(log y)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y^(x)=e^(y-x)" prove that, " (dy)/(dx)=((logey)^(2))/(log y) .

If y^(x)= e^(y-x) , then prove that (dy)/(dx)= ((1+ log y)^(2))/(log y)

If y^(x)=e^(y-x) , then prove that (dy)/(dx)=((1+log y)^(2))/(logy) .

If e^(y)=y^(x), prove that (dy)/(dx)=((log y)^(2))/(log y-1)

Differentiate the following w.r.t.x. If y^x = e^(y - x) , prove that (dy)/(dx) = ((1 + log y)^2)/(log y)

If x=e^(x/y), prove that (dy)/(dx)=(x-y)/(x log x)

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))