Home
Class 12
MATHS
Find the position vector of a point R w...

Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are `2( veca+ vec b)`and `( vec a-3 vec b)`externally in the ratio 1 : 2. Also, show that P is the mid point of the line segment RQ

Text Solution

AI Generated Solution

To find the position vector of point R that divides the line joining points P and Q externally in the ratio 1:2, we can follow these steps: ### Step 1: Identify the position vectors of points P and Q Given: - Position vector of point P, \( \vec{P} = 2\vec{a} + \vec{b} \) - Position vector of point Q, \( \vec{Q} = \vec{a} - 3\vec{b} \) ### Step 2: Use the formula for external division ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are (2vec a+vec b) and (vec a-3vec b) respectively,externally in the ratio 1:2. Also,show that P is the mid-point of the line segment RQ.

Find the position vector of a point R which divides the line segment joining P and Q whose position vectors are 2vec a+vec b and vec a-4vec b ,externally in the ratio 1:2, also show that P is the midpoint of the line segment RQ.

Find the position vector of a point R which divides the line joining the two points P and Q with position vectors vec OP=2vec a+vec b and vec OQ=vec a-2vec b, respectively in the ratio 1:2 internally and externally.

Find the position vector of a point R which-divides the line joining two points P and Q whose position vectors are hati+2hatj-hatk and -hati+hatj+hatk respectively, in the ratio 2:1 Internally

Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are hat i+2hat j-hat k and respectively,in the ratio 2:1(i) internally (ii) externally

Find the position vector of R, which divides the line joining two points P(2vec(a)+vec(b)) and Q(vec(a)-3vec(b)) externally in the ratio 1 : 2. Also show that P is the middle point of the segment RQ.

The position vector of a midpoint lying on the line joining the points whose position vectors are vec i+vec j-vec k and vec i-vec j+vec k is

Position vectors of a point which divides line joining points A and B whose position vectors are 2hati+hatj-hatk and hati-hatj+2hatk externally in the ratio 5:2 is