Home
Class 12
MATHS
Evaluate the following determinants: (...

Evaluate the following determinants:
(b) `|(cos theta, -sin theta),(sin theta, cos theta)| = cos theta (cos theta) - sin theta(-sin theta) = cos^(2) theta + sin^(2) theta = 1`

Text Solution

Verified by Experts

The correct Answer is:
`x^(3) - x^(2) + 2`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    SUBHASH PUBLICATION|Exercise TWO MARKS QUESTIONS WITH ANSWERS|13 Videos
  • DETERMINANT

    SUBHASH PUBLICATION|Exercise FOUR MARKS QUESTIONS WITH ANSWERS|21 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|6 Videos
  • INTEGRALS

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|21 Videos

Similar Questions

Explore conceptually related problems

cos^(2)theta+sin^(2)theta is:

(3 cos theta+cos 3 theta)/(3 sin theta-sin 3 theta)=

((cos theta+i sin theta)/(sin theta+i cos theta))^(4)=

(1-cos theta)/(sin theta)=(sin theta)/(1+cos theta)

(1-cos theta)/(sin theta)=(sin theta)/(1+cos theta)

(sin theta)/(cosec theta)+(cos theta)/(sec theta)=1

If tan theta = 3/4, cos^(2) theta - sin^(2) theta = _______

(sin theta + cos theta)/(sin theta - cos theta) + (sin theta - cos theta)/(sin theta + cos theta)= ________

(sin^(2) theta)/(1-cos theta)-(cos^(2) theta)/(1-sin theta)=cos theta-sin theta

Prove that (sin theta+cos theta)/(sin theta- cos theta) + (sin theta - cos theta)/(sin theta + cos theta) = ( 2sec^(2) theta)/(tan^(2) theta -1) .