Home
Class 12
MATHS
Prove that (AB)^(-1) = B^(-1) . A^(-1) g...

Prove that `(AB)^(-1) = B^(-1) . A^(-1)` give that `A = [(2,3),(1,-4)] and B = [(1,-2),(-1,3)]`.

Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    SUBHASH PUBLICATION|Exercise FIVE MARKS QUESTIONS WITH ANSWERS|9 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|6 Videos
  • INTEGRALS

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|21 Videos

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

If A = [(1,3),(4,2)] , B = [(2,-1),(1,2)] , then |ABB'| =

Prove that AB||CD if A = (-1,-2), B = (0, 1), C = (3, 0), D = (2, -3)

Prove that AB bot CD if A = (2, 1), B = (0, -1), C= (-1, 8), D = (4, 3)

If A = [(1,-1),(2,3)], B = [(1,3),(-1,4)] and C = [(2,-2),(3,0)] verify that A(BC) = (AB)C .

Prove that 3cos^(-1)x=cos^(-1)(4x^(3)-3x)" "x in [1/2,1]

If A=[(1,2,3),(2,3,1)] and B=[(3,-1,3),(-1,0,2)] , then find 2A-B .

If A=[(1,3),(4,2)],B=[(2,-1),(1,2)]," then "|ABB'|=

If A = [(4,-1),(0,3)], B = [(1,2),(-1,3)] and C = [(1, -2),(3,5)] verify that A(BC) = (AB)C .