Home
Class 12
MATHS
If (x+iy)^(3)=u+iv,then show that u/x+v...

If `(x+iy)^(3)=u+iv`,then show that `u/x+v/y =4(x^(2) -y^(2))`?

Promotional Banner

Topper's Solved these Questions

  • MOCK QUESTION PAPER - 5

    SUBHASH PUBLICATION|Exercise Part-D|10 Videos
  • MOCK QUESTION PAPER - 5

    SUBHASH PUBLICATION|Exercise Part-E|4 Videos
  • MOCK QUESTION PAPER - 5

    SUBHASH PUBLICATION|Exercise Part-B|14 Videos
  • MOCK QUESTION PAPER - 3

    SUBHASH PUBLICATION|Exercise Part-E|4 Videos
  • MOCK QUESTION PAPER - 6

    SUBHASH PUBLICATION|Exercise Part-E|4 Videos

Similar Questions

Explore conceptually related problems

If (x+iy)^(3) = u + iy , then show that u/x + v/y = 4(x^(2)-y^(2))

If (x+iy)^(1//3) = a+ib , where a, b, x, y in R show that x/a - y/b = -2(a^(2) + b^(2)) .

If y=(tan^(-1)x)^(2) , show that (x^(2)+1)^(2)y_(2)+2x(x^(2)+1)y_(1)=2 .

If P (x, y) lies on a circle whose centre is (3,-2) and radius is 3, show that x^(2) + y^(2) - 6x + 4y + 4 = 0 .

If y=3 cos(log x)+4 sin(log x), show that x^(2)y_(2)+xy_(1)+y=0

x+y+z=0 Show that x^(3)+y^(2)+z^(3)=3xyz

If (x+iy) =(a+ib)/(a-ib) prove that (x^(2) +y^(2)) = 1 ?

If y=(tan^(-1)x)^(2) show that (x^(2)+1)^(2)y_(2)+2x(x^(2)+1)y_(1)=2

If x+iy=(2+i)/(2-i) then prove taht x^(2)+y^(2)=1