Home
Class 11
MATHS
Find lim(xrarr0)f(x) and lim(xrarr1)f(x)...

Find `lim_(xrarr0)f(x) and lim_(xrarr1)f(x)`, where `f(x)={{:(2x+3",",xle0),(3(x+1)",",xgt0):}`

Text Solution

Verified by Experts

The correct Answer is:
`underset(x->0)Lt y(x) =3`
Promotional Banner

Topper's Solved these Questions

  • ANNUAL EXAMINATION QUESTION PAPER -2

    SUBHASH PUBLICATION|Exercise Section -D|9 Videos
  • ANNUAL EXAMINATION QUESTION PAPER -2

    SUBHASH PUBLICATION|Exercise Section -E|4 Videos
  • ANNUAL EXAMINATION QUESTION PAPER -2

    SUBHASH PUBLICATION|Exercise Section -B|14 Videos
  • ANNUAL EXAMINATION QUESTION PAPER - 6

    SUBHASH PUBLICATION|Exercise Section-E|4 Videos
  • ANNUAL EXAMINATION QUESTION PAPER -3

    SUBHASH PUBLICATION|Exercise Section -E|4 Videos

Similar Questions

Explore conceptually related problems

Find lim_(xrarr1)f(x) , where f(x)={{:(x^(2)-1",",xle1),(-x^(2)-1",",xgt1):}

Find lim_(xrarr5)f(x) , where f(x)=|x|-5

Find lim_(xrarr0)f(x) , where f(x)={{:((x)/(|x|)",", x ne0),(0",",x=0):}

Evaluate lim_(xrarr0)f(x)," where "f(x)={{:((|x|)/(x)",",x ne0),(0",",x=0):}

lim_(x rarr 0) ((x)/(tan^(-1) 2x)) is :

Evaluate : lim_(xrarr0)(tanx)/(x)

lim_(x rarr 0) (3^(x)-2^(x))/x=

Evaluate : lim_(xrarr0)(sqrt(1+x)-1)/(x)

If lim_(x rarr a^(+)) f(x) = l = lim_(x rarr a^(-)) g(x) and lim_(x rarr a^(-)) f(x) = m = lim_(x rarr a^(+)) g(x) , then the function f(x) g(x) :