Home
Class 11
MATHS
Prove that cos^(2)2x-cos^(2)6x=sin4x.sin...

Prove that `cos^(2)2x-cos^(2)6x=sin4x.sin8x` ?

Promotional Banner

Topper's Solved these Questions

  • ANNUAL EXAMINATION QUESTION PAPER -3

    SUBHASH PUBLICATION|Exercise Section -E|4 Videos
  • ANNUAL EXAMINATION QUESTION PAPER -3

    SUBHASH PUBLICATION|Exercise Section -C|14 Videos
  • ANNUAL EXAMINATION QUESTION PAPER -2

    SUBHASH PUBLICATION|Exercise Section -E|4 Videos
  • ANNUAL EXAMINATION QUESTION PAPER -4

    SUBHASH PUBLICATION|Exercise Section -E|4 Videos

Similar Questions

Explore conceptually related problems

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x

Prove that (cos x +cos y)^(2)+(sin x-sin y)^(2)=4 cos^(2) ((x+y)/(2))

Prove that cos^(2)+x+cos^(2) (x+pi/3)+cos^(2)(x-pi/3)=3/2 and hence find the values of sin^(2)x +sin^(2) (x+pi/3)+sin^(2) (x-pi/3)

Prove that (cos7x+cos5x)/(sin7x-sin5x)= cotx ?

Prove that cos (pi/2 + x) = - sin x .

cos4x=1-8sin^(2)x cos^(2) x

Prove that (cos 7x + cos 5x)/( sin 7x - sin 5x) = cot x

Number of solutions of the equation sin^(4) x-cos^(2)x sin x + 2 sin^(2) x+sin x=0 in 0 le x le 3pi is ________.

The value of (cos^(4)x+cos^(2)x sin^(2) x + sin^(2)x)/(cos^(2)x+ sin^(2) x cos^(2) x + sin^(4)x) is ____________

The number of distinct solution of the equation 5/4 cos^(2) 2x + cos^(4)x+sin^(4) x+cos^(6)x+sin^(6) x=2 in the interval [0, 2pi] is _______.