Home
Class 12
MATHS
Prove that sin^(-1) x+cos^(-1) x=pi/2, x...

Prove that `sin^(-1) x+cos^(-1) x=pi/2, x in [-1,1]`

Promotional Banner

Topper's Solved these Questions

  • SUPPLEMENTARY EXAM QUESTION PAPER JULY 2015

    SUBHASH PUBLICATION|Exercise PART C|14 Videos
  • SUPPLEMENTARY EXAM QUESTION PAPER JULY 2015

    SUBHASH PUBLICATION|Exercise PART D|9 Videos
  • SUPPLEMENTARY EXAM QUESTION PAPER JULY 2015

    SUBHASH PUBLICATION|Exercise PART E|4 Videos
  • SUPPLEMENTARY EXAM QUESTION PAPER 2017

    SUBHASH PUBLICATION|Exercise PART E|2 Videos
  • THREE DIMENSIONAL GEOMETRY

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|11 Videos

Similar Questions

Explore conceptually related problems

prove that 3sin^(-1)x=sin^(-1)(3x-4x^(3)), x in [(-1)/2,1/2]

Prove that cot^(-1)(-x)=pi-cot^(-1)x,AAx inR .

Prove that 3cos^(-1)x=cos^(-1)(4x^(3)-3x)" "x in [1/2,1]

Prove that tan^(-1)((cosx)/(1+sinx))=pi/4-x/2x in [-pi/2,pi/2]

If 4sin^(-1)x + cos^(-1)x = pi, then x equals

If sin ^(-1) x+cos ^(-1)(1-x)=0 then x=

If sin ^(-1) x+cot ^(-1) (1)/(2)=(pi)/(2), then x=

If cos^(-1) x > sin^(-1) x , then :