Home
Class 12
MATHS
Prove that int(0)^(2a) f(x) dx = 2int(0)...

Prove that `int_(0)^(2a) f(x) dx = 2int_(0)^(a) f(x) dx` when `f(2a -x) = f(x)` and hence evaluate `int_(0)^(pi) |cos x| dx`.

Promotional Banner

Topper's Solved these Questions

  • MODEL QUESTION PAPER 1

    SUBHASH PUBLICATION|Exercise PART D|9 Videos
  • MOCK QUESTION PAPER -4

    SUBHASH PUBLICATION|Exercise Part-E|4 Videos
  • MODEL QUESTION PAPER 2

    SUBHASH PUBLICATION|Exercise PART E|3 Videos

Similar Questions

Explore conceptually related problems

(a) Prove that int_(0)^(2x) f(x) dx = 2int_(0)^(2x) f(x) dx when f(2a-x) =f(x) and hence evaluate int_(0)^(pi) |cos x| dx . (b) Prove that |{:(-a^(2),ab,ac),(bc,-b^(2),bc),(ca,cb,-c^(2)):}|=4a^(2)b^(2)c^(2) .

Evaluate int _(0)^(pi//2)cos x dx

int_(0)^(pi//2) cos 2x dx .

Evaluate int_(0)^(2 pi ) cos^(5) x dx

Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (b) int_(0)^(pi/2) cos^(2) xdx .

int_(0)^(pi//4) cos^(2) x dx

Prove that int_(0 )^(a) f (x) dx = int_(0)^(a) f (a -x) dx hence evaluate int_(0)^(pi/2) ( cos^5 x)/( cos^2 x+ sinn ^5 x) dx

Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (e) int_(0)^(2)xsqrt(2 - x) dx .

Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (d) int_(0)^(1)x(1 -x)^(n)dx .