Prove that `int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):}` and hence evaluate (a) `int_(-1)^(1) sin^(5)x cos^(4)xdx`.
Topper's Solved these Questions
MODEL QUESTION PAPER 4
SUBHASH PUBLICATION|Exercise PART D|10 Videos
MODEL QUESTION PAPER 3
SUBHASH PUBLICATION|Exercise PART E|4 Videos
MODEL QUESTION PAPER 5
SUBHASH PUBLICATION|Exercise PART E|3 Videos
Similar Questions
Explore conceptually related problems
Prove that int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):} and hence evaluate (c) int_(0)^(pi)|cosx|dx .
Prove that int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):} and hence evaluate (b) int_(-pi//2)^(pi//2) sin^(7) x dx .
Prove that int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):} and hence evaluate (d) int_(-pi//2)^(pi//2)tan^(9) xdx .
Prove that: int_(-a)^(a) f(x) dx = {{:(2int_(0)^(a)f(x)dx, f(x) " is even "),(0, f(x) " is odd"):} and hence Evaluate int_(-t)^(t) sin^(5)(x)cos^(4)(x) dx
Prove that int_(-a)^(a)f(x)dx= {(2int_(0)^(a)f(x)dx ,"if f(x) is even function"),(0, "if f(x) is odd function"):} and hence evaluate int_(-(pi)/(2))^((pi)/(2))sin^(7)xdx
Find : int(1)/(sin^(4)x+cos^(4)x)dx .
Prove that int_(a)^(b) f(x)dx=int_(a)^(c)f(x)dx+int_(c)^(b)f(x)dx
Evaluate int_(0)^(2 pi ) cos^(5) x dx
Prove that int_(0)^(2a) f(x) dx = 2int_(0)^(a) f(x) dx when f(2a -x) = f(x) and hence evaluate int_(0)^(pi) |cos x| dx .