Prove that `int_(a)^(b)(x)dx = int_(a)^(b)f(a+b-x)dx` and `int_(pi/4)^(pi/3)(dx)/(1+sqrt(tanx))`.
Topper's Solved these Questions
MODEL QUESTION PAPER 5
SUBHASH PUBLICATION|Exercise PART D|9 Videos
MODEL QUESTION PAPER 4
SUBHASH PUBLICATION|Exercise PART E|3 Videos
PROBABILITY
SUBHASH PUBLICATION|Exercise Try yourself (Five marks questions :)|3 Videos
Similar Questions
Explore conceptually related problems
int_(pi//6)^(pi//3) (dx)/(1 + sqrt(tan x)) =
a) Prove that int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx" and evaluate "int_(pi//6)^(pi//3)(dx)/(1+sqrt(tanx)) b) Prove that |{:(1+a^(2)-b^(2), 2ab, -2b), (2ab, 1-a^(2)+b^(2), 2a), (2, -2a, 1-a^(2)-b^(2)):}|=(1+a^(2)+b^(2))^(3)
int_(pi/6)^(pi/3) (dx)/(1+sqrtcotx) =
Prove that int_(a)^(b) f(x)dx=int_(a)^(c)f(x)dx+int_(c)^(b)f(x)dx
Prove that int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx and hence evaluate int_((pi)/(6))^((pi)/(3))(1)/(1+sqrt(tanx))dx.
Prove that int_(a)^(b) f(x)dx= int_(a)^(b) f (a+b-x)dx" hence evaluate " int_(0)^(pi/4) log(1+tan x)dx .
Prove that int_(0)^(a)(x)dx = int_(0)^(a) f(a-x)dx and hence evaluate int_(0)^(pi/4)log (1 + tan x)dx .
int(a^(-x)-b^(-x))dx =
Prove that int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx and hence evaluate int_(0)^(pi//2)(2log sin x-log sin2x)dx .