Home
Class 11
MATHS
[" 1) Prove that "],[qquad i^(n)+i^(n+1)...

[" 1) Prove that "],[qquad i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0 for all n inN

For an positive integer n, prove that : i^(n) + i^(n+1) + i^(n+2) + i^(n+3) + i^(n+4) + i^(n + 5) + i^(n+6) + i^(n+7) = 0 .

1 + i^(2n) + i^(4n) + i^(6n)

Prove that i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0 , for all n in N .

For any positive integer n, prove that: i^(n)+i^(n+1)+i^(n+2)+i^(n+3)+i^(n+4)+i^(n+5)+i^(n+6)+i^(n+7)=0 .

If i= sqrt-1 and n is a positive integer , then i^(n) + i^(n + 1) + i^(n + 2) + i^(n + 3) is equal to

Prove that : adj. I_(n)=I_(n)

Prove that: adj.I_n^-1=I_n