Home
Class 12
MATHS
" 6."tan^(-1)(1)/(sqrt(x^(2)-1)),|x|>...

" 6."tan^(-1)(1)/(sqrt(x^(2)-1)),|x|>

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x+sqrt(1+x^(2)))=

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1) ((x)/(sqrt(1-x^(2)))) .

Differentiate tan^(-1)((sqrt(1+x^(2)-1))/(x)) with respect to tan^(-1)x,x!=0

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

If y = tan^(-1) {(x)/(1 + sqrt(1 - x^(2)))} + sin { 2 tan^(-1) sqrt((1 - x)/(1 + x))}, "then" (dy)/(dx) =

IfI=int(dx)/(x^(3)sqrt(x^(2)-1)), then Iequals a.(1)/(2)((sqrt(x^(2)-1))/(x^(3))+tan^(-1)sqrt(x^(2)-1))+C b.(1)/(2)((sqrt(x^(2)-1))/(x^(2))+x tan^(-1)sqrt(x^(2)-1))+Cc(1)/(2)((sqrt(x^(2)-1))/(x^(2))+tan^(-1)sqrt(x^(2)-1))+Cd(1)/(2)((sqrt(x^(2)-1))/(x^(2))+tan^(-1)sqrt(x^(2)-1))+C

Prove that tan^(-1)((sqrt(1+x^2)-1)/x)=1/2 tan^(-1)x .