Home
Class 12
MATHS
For all x, (2x +5)^2(-3x + 7)= ?...

For all x, `(2x +5)^2(-3x + 7)= ?`

A

`-12x^2 + 70`

B

`-6x^2-x +35`

C

`4x^2+ 20x + 25`

D

`-12x^3 - 32x^2 + 65x + 175`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((2x + 5)^2(-3x + 7)\), we will follow these steps: ### Step 1: Expand \((2x + 5)^2\) Using the formula for the square of a binomial, \((a + b)^2 = a^2 + 2ab + b^2\): \[ (2x + 5)^2 = (2x)^2 + 2(2x)(5) + (5)^2 \] Calculating each term: \[ (2x)^2 = 4x^2 \] \[ 2(2x)(5) = 20x \] \[ (5)^2 = 25 \] So, \[ (2x + 5)^2 = 4x^2 + 20x + 25 \] ### Step 2: Multiply the expanded form by \(-3x + 7\) Now we will multiply \((4x^2 + 20x + 25)\) by \((-3x + 7)\): \[ (4x^2 + 20x + 25)(-3x + 7) \] We will distribute each term in the first polynomial by each term in the second polynomial. #### Distributing \(4x^2\): \[ 4x^2 \cdot (-3x) = -12x^3 \] \[ 4x^2 \cdot 7 = 28x^2 \] #### Distributing \(20x\): \[ 20x \cdot (-3x) = -60x^2 \] \[ 20x \cdot 7 = 140x \] #### Distributing \(25\): \[ 25 \cdot (-3x) = -75x \] \[ 25 \cdot 7 = 175 \] ### Step 3: Combine all the terms Now we will combine all the terms we obtained: \[ -12x^3 + (28x^2 - 60x^2) + (140x - 75x) + 175 \] This simplifies to: \[ -12x^3 - 32x^2 + 65x + 175 \] ### Final Expression Thus, the final expression is: \[ (2x + 5)^2(-3x + 7) = -12x^3 - 32x^2 + 65x + 175 \] ---
Promotional Banner

Topper's Solved these Questions

  • ELEMENTARY ALGEBRA

    ENGLISH SAT|Exercise EXERCISE|12 Videos
  • DIAGNOSTIC TEST

    ENGLISH SAT|Exercise MCQs (EXERCISE)|50 Videos
  • EXPONENTIAL AND LOGARITHMIC FUNCTIONS

    ENGLISH SAT|Exercise Exercises|10 Videos

Similar Questions

Explore conceptually related problems

For all x gt 5, (5x^2-x^3)/(x^2-x- 20) = ?

In each of the following find the value of 'a' 9x^(2) + (7a-5)x + 25 = (3x + 5)^(2)

Solve : 5(2x-3)-3(3x-7)=5

(2/3)^(-5)x\ (5/7)^(-5) is equal to (a) (2/3x5/7)^(-10) (b) (2/3x5/7)^(-5) (c) (2/3x5/7)^(25) (d) (2/3x5/7)^(-25)

Solve for x: 11^(4x-5)*3^(2x)=5^(3-x) * 7^(-x) .

State true or false : 7x^(3)+2x^(2)+3x-5 is a multionmial

State true or false : 7x^(3)+2x^(2)+3x-5 is a polynomial

Solve: (3x+5)/(2x+7)=4

Differentiation of (2x-7)^2(3x+5)^3