Home
Class 12
MATHS
For i^2= -1, (1 - 3i)^3= ?...

For `i^2= -1, (1 - 3i)^3= ?`

A

`-26`

B

`-8`

C

`-10+30i`

D

`-26+18i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((1 - 3i)^3\), we can use the binomial expansion formula for the cube of a binomial, which is given by: \[ (a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 \] In our case, let \(a = 1\) and \(b = 3i\). Now, we can substitute these values into the formula. ### Step 1: Calculate \(a^3\) \[ a^3 = 1^3 = 1 \] ### Step 2: Calculate \(-3a^2b\) \[ -3a^2b = -3(1^2)(3i) = -3(1)(3i) = -9i \] ### Step 3: Calculate \(3ab^2\) \[ b^2 = (3i)^2 = 9i^2 \] Since \(i^2 = -1\), \[ b^2 = 9(-1) = -9 \] Now, substituting back: \[ 3ab^2 = 3(1)(-9) = -27 \] ### Step 4: Calculate \(-b^3\) \[ -b^3 = -(3i)^3 = -27i^3 \] Since \(i^3 = i^2 \cdot i = -1 \cdot i = -i\), \[ -b^3 = -27(-i) = 27i \] ### Step 5: Combine all the terms Now we combine all the calculated terms: \[ (1 - 3i)^3 = 1 - 9i - 27 + 27i \] ### Step 6: Simplify the expression Combining like terms: \[ 1 - 27 = -26 \] \[ -9i + 27i = 18i \] Thus, we have: \[ (1 - 3i)^3 = -26 + 18i \] ### Final Answer The final result is: \[ (1 - 3i)^3 = -26 + 18i \] ---
Promotional Banner

Topper's Solved these Questions

  • INTERMEDIATE ALGEBRA/COORDINATE GEOMETRY

    ENGLISH SAT|Exercise EXERCISE|12 Videos
  • IMPROVING YOUR MATH SCORE

    ENGLISH SAT|Exercise VERY CHALLENGING PROBLEMS|12 Videos
  • LINEAR FUNCTIONS

    ENGLISH SAT|Exercise EXERCISES|7 Videos

Similar Questions

Explore conceptually related problems

3i(1-i) ?

Express the following in the form of a + ib . (i) ( 1/2 + 3i)^(2) (ii) ( 2+ 3i) ( 2-3i)

The sum of i-2-3i+4 up to 100 terms, where i=sqrt(-1) is 50(1-i) b. 25 i c. 25(1+i) d. 100(1-i)

Given a_(i)^(2) + b_(i)^(2) + c_(i)^(2) = 1, i = 1, 2, 3 and a_(i) a_(j) + b_(i) b_(j) + c_(i) c_(j) = 0 (i !=j, i, j =1, 2, 3) , then the value of the determinant |(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))| , is

If i^2=-1, then the sum i+i^2+i^3+... upto 1000 terms is equal to a. 1 b. -1 c. i d. 0

Express the following in the standard form a+i b :(1/(1-2i)+3/(1+i))((3+4i)/(2-4i))

Express each one of the following in the standard form a+i b :(1/(1-2i)+3/(1+i))((3+4i)/(2-4i))

Find the values of x and y from the following : (i) (3x -7)+2iy=-5y+(5+ x)i (ii) 2x i+12= 3y-6i (iii) z=x+iy and i(z+2)+1=0 (iv) ((1+i)x-2i)/(3+i)+((2-3i)y+i)/(3-i)=i (v) (3x-2iy)(2+i)^(2)=10(1+i)

Simplify: (1)/(i) + (1)/(i^(2)) + (1)/(i^(3)) + (1)/(i^(4))

Simplify: (1)/(i)- (1)/(i^(2)) + (1)/(i^(3)) - (1)/(i^(4))