Home
Class 12
MATHS
Simplify (4x^2+2x^2-3(x-7)-(-2x^4-2x^2+3...

Simplify `(4x^2+2x^2-3(x-7)-(-2x^4-2x^2+3x-5))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 4x^2 + 2x^2 - 3(x - 7) - (-2x^4 - 2x^2 + 3x - 5) \), we will follow these steps: ### Step 1: Distribute and simplify the terms inside the parentheses We start by distributing the \(-3\) across the terms in the parentheses \( (x - 7) \): \[ -3(x - 7) = -3x + 21 \] Now, we rewrite the expression: \[ 4x^2 + 2x^2 - 3x + 21 - (-2x^4 - 2x^2 + 3x - 5) \] ### Step 2: Simplify the double negative Next, we simplify the double negative: \[ -(-2x^4 - 2x^2 + 3x - 5) = 2x^4 + 2x^2 - 3x + 5 \] Now, we can rewrite the entire expression: \[ 4x^2 + 2x^2 - 3x + 21 + 2x^4 + 2x^2 - 3x + 5 \] ### Step 3: Combine like terms Now, we combine all like terms: - For \(x^4\): \(2x^4\) - For \(x^2\): \(4x^2 + 2x^2 + 2x^2 = 8x^2\) - For \(x\): \(-3x - 3x = -6x\) - For the constant terms: \(21 + 5 = 26\) Putting it all together, we have: \[ 2x^4 + 8x^2 - 6x + 26 \] ### Final Result Thus, the simplified expression is: \[ \boxed{2x^4 + 8x^2 - 6x + 26} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: (x^3-2x^2+5x-7)(2x-3)

Simplify: (2x^2+3x-5)(3x^2-5x+4)

Simplify: (3x+2)(2x+3)-(4x-3)(2x-1)

Simplify: -4x^(2)+{(2x^(2)-3)-(4-3x^(2))}

Simplify: 2x^2(x^3-x)-3x(x^4+2x)-2(x^4-3x^2)

Simplify: (x^3-2x^2+3x-4)(x-1)-\ (2x-3)(x^2-x+1)

Simplify: (5-x)(3-2x)(4-3x)

Simplify: (5x-3)(x+2)-(2x+5)(4x-3)

Simplify: x(x+4)+3x(2x^2-1)+4x^2+4

Simplify: 9x^4(2x^3-5x^4)xx5x^6(x^4-3x^2)