Home
Class 12
MATHS
Simplify (3x^5y^3z^2)/(x^2yz^4)xxx^3y^3z...

Simplify `(3x^5y^3z^2)/(x^2yz^4)xxx^3y^3z`

A

`3x^8y^6z^2`

B

`(3x^4)/(z^3)`

C

`(3x^3y^2)/(z^3)`

D

`(3x^6y^5)/(z^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((3x^5y^3z^2)/(x^2yz^4) \cdot (x^3y^3z)\), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{3x^5y^3z^2}{x^2yz^4} \cdot (x^3y^3z) \] This can be rewritten as: \[ \frac{3x^5y^3z^2 \cdot x^3y^3z}{x^2yz^4} \] ### Step 2: Combine the numerators Now, we will multiply the terms in the numerator: \[ 3x^5y^3z^2 \cdot x^3y^3z = 3 \cdot x^{5+3} \cdot y^{3+3} \cdot z^{2+1} = 3x^8y^6z^3 \] ### Step 3: Write the new expression Now, we have: \[ \frac{3x^8y^6z^3}{x^2yz^4} \] ### Step 4: Simplify the fraction Next, we will simplify the fraction by dividing the powers of \(x\), \(y\), and \(z\): - For \(x\): \(x^{8-2} = x^6\) - For \(y\): \(y^{6-1} = y^5\) - For \(z\): \(z^{3-4} = z^{-1}\) Putting it all together, we have: \[ 3x^6y^5z^{-1} \] ### Step 5: Rewrite with positive exponents Since \(z^{-1} = \frac{1}{z}\), we can rewrite the expression as: \[ \frac{3x^6y^5}{z} \] ### Final Answer Thus, the simplified expression is: \[ \frac{3x^6y^5}{z} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: (x+y-2z)^2-x^2-y^2-3z^2+4x y

Simplify (4x^(2)y^(2)z - 6xy^(3)z +10 x^(3)yz^(2)) div (-2xyz)

Simplify: 2-3z^(2)+5yz+7y^(2)-8+z^(2)-6yz-9y^(2)+1-2z^(2)-2yz-y^(2)

Simplify: ((x^(2)-y^(2))^(3) + (y^(2) - z^(2))^(3) + (z^(2) -x^(2))^(3))/((x-y)^(3) + (y-z)^(3) + (z-x)^(3))

Simplify : (x+y+z)^2+(x+y/2+z/3)^2-(x/2+y/3+z/4)^2

Simplify 27x^(3)y^(2)z div (-6xy^(3)z^(4))

Divide the given polynomial by the given monomial. (i) (5x^2 - 6x) -: 3x (ii) (3y^8-4y^6+5y^4)divy^4 (iii) 8(x^3y^2z^2 + x^2y^3z^2 + x^2y^2z^3) -: 4x^2y^2z^2 (iv) (x^3+2x^2+3x)div2x (v) (p^3q^6 - p^6q^3) -: p^3q^3

Simplify : (3y + 4z)(3y - 4z) + (2y + 7z)(y+z)

Simplify: 5x+3y-8z+2y-3x+5z+z-7y-2x

If x,y,z in R and |{:(x,y^2,z^3),(x^4,y^5,z^6),(x^7,y^8,z^9):}|=2 then find the value of |{:(y^5z^6(z^3-y^3),x^4z^6(x^3-z^3),x^4y^5(y^3-x^3)),(y^2z^3(y^6-z^6),xz^3(z^6-x^6), xy^2(x^6-y^6)),(y^2z^3(z^3-y^3),xz^3(x^3-z^3),xy^2(y^3-x^3)):}|