Home
Class 12
MATHS
Find (2+4i)(3-2i)+(-3i)(5i)...

Find `(2+4i)(3-2i)+(-3i)(5i)`

A

`-17+8i`

B

`13+8i`

C

`13+16i`

D

`29+8i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((2 + 4i)(3 - 2i) + (-3i)(5i)\), we will follow these steps: ### Step 1: Expand the first part \((2 + 4i)(3 - 2i)\) Using the distributive property (also known as the FOIL method for binomials): \[ (2 + 4i)(3 - 2i) = 2 \cdot 3 + 2 \cdot (-2i) + 4i \cdot 3 + 4i \cdot (-2i) \] Calculating each term: - \(2 \cdot 3 = 6\) - \(2 \cdot (-2i) = -4i\) - \(4i \cdot 3 = 12i\) - \(4i \cdot (-2i) = -8i^2\) Now substituting \(i^2 = -1\): \(-8i^2 = -8(-1) = 8\) Combining all these results: \[ 6 - 4i + 12i + 8 = 6 + 8 + (-4i + 12i) = 14 + 8i \] ### Step 2: Calculate the second part \((-3i)(5i)\) \[ (-3i)(5i) = -15i^2 \] Again substituting \(i^2 = -1\): \(-15i^2 = -15(-1) = 15\) ### Step 3: Combine the results from Step 1 and Step 2 Now we add the results from both parts: \[ (14 + 8i) + 15 = 14 + 15 + 8i = 29 + 8i \] ### Final Answer Thus, the final result is: \[ \boxed{29 + 8i} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the multiplicative inverse of each of the following complex numbers when it exists. ((2 + 3i) (3 + 2i)i)/(5+ i)

Find the square root of the following complex number ((2+3i)/(5-4i) + (2-3i)/(5+4i))

Find the modulus of the following using the property of modulus (3+2i)/(2-5i) + (3-2i)/(2+5i)

Convert the following in the form of (a+ib) : (i) (1+i)^(4) (ii) (-3+(1)/(2)i)^(3) (iii) (1-i)(3+4i) (iv) (1+i)(1+ 2i)(1+ 3i) (v) (3+5i)/(6-i) (vi) ((2+3i)^(2))/(2+i) (vii) ((1+ i)(2+i))/((3+i)) (viii) (2-i)^(-3)

Find x and y if (x^4+2x i)-(3x^2+y i)=(3-5i)+(1+2y i)

The modulus of ((1+2i)(3-4i))/((4+3i)(2-3i)) is

Prove that [((3+2i)/(2-5i))+ ((3-2i)/(2+5i))] is rational

Express each of the following in the standerd from a + ib (i) (5+4i)/(4+ 5i) (ii) ((1 +i)^(2))/(3-i) (iii) (1)/(1-cos theta + 2i sintheta)

Prove that the following complex number is purely real: (i) ((2+3i)/(3+4i))((2-3i)/(3-4i))

Show that (1+ 2i)/(3+4i) xx (1-2i)/(3-4i) is real