Home
Class 12
MATHS
If 3xsqrt(50)-sqrt(32x^2)=sqrt(18), find...

If `3xsqrt(50)-sqrt(32x^2)=sqrt(18)`, find x

A

`-8sqrt2`

B

0

C

`3/(11)`

D

`1/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3x\sqrt{50} - \sqrt{32x^2} = \sqrt{18}\), we will follow these steps: ### Step 1: Simplify the square roots First, we simplify the square roots in the equation. - \(\sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \cdot \sqrt{2} = 5\sqrt{2}\) - \(\sqrt{32x^2} = \sqrt{16 \times 2 \times x^2} = \sqrt{16} \cdot \sqrt{2} \cdot \sqrt{x^2} = 4x\sqrt{2}\) - \(\sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \cdot \sqrt{2} = 3\sqrt{2}\) So, we can rewrite the equation as: \[ 3x(5\sqrt{2}) - 4x\sqrt{2} = 3\sqrt{2} \] ### Step 2: Factor out \(\sqrt{2}\) Now, we can factor out \(\sqrt{2}\) from both sides of the equation: \[ \sqrt{2}(15x - 4x) = 3\sqrt{2} \] ### Step 3: Simplify the equation This simplifies to: \[ \sqrt{2}(11x) = 3\sqrt{2} \] ### Step 4: Divide both sides by \(\sqrt{2}\) Since \(\sqrt{2}\) is common on both sides, we can divide both sides by \(\sqrt{2}\): \[ 11x = 3 \] ### Step 5: Solve for \(x\) Now, we can solve for \(x\) by dividing both sides by 11: \[ x = \frac{3}{11} \] ### Final Answer Thus, the value of \(x\) is: \[ \boxed{\frac{3}{11}} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , find x^2+y^2

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , find x^2+y^2

If y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2]) and 0 < x < 1, then find (dy)/(dx)

If y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2]) and 0

(i) If x = (6ab)/(a + b) , find the value of : (x + 3a)/(x - 3a) + (x + 3b)/(x - 3b) . (ii) a = (4sqrt(6))/(sqrt(2) + sqrt(3)) , find the value of : (a + 2sqrt(2))/(a - 2sqrt(2)) + (a + 2sqrt(3))/(a - 2sqrt(3)) .

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) find x^2+y^2

If y=cos^(-1){xsqrt(1-x)+sqrt(x)sqrt(1-x^2)} and 0

The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

sin^-1[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)]