Home
Class 10
MATHS
cot^(2)theta-(1)/(sin^(2)theta)=-1...

cot^(2)theta-(1)/(sin^(2)theta)=-1

Promotional Banner

Similar Questions

Explore conceptually related problems

Write the value of cot^(2)theta-(1)/(sin^(2)theta)

The value of cot^(2)theta-(1)/(sin^(2)theta) is:

(1+(1)/(tan^(2)theta))(1+(1)/(cot^(2)theta))=(1)/(sin^(2)theta-sin^(4)theta)

What is the value of cot^(2) theta-1/(sin^(2) theta) ?

If 1/(sin^(2)theta)-1/(cos^(2) theta)-1/(tan^(2)theta)-1/(cot^(2)theta)-1/(sec^(2)theta)-1/(cosec^(2)theta)=-3 then find the value of theta .

Write the value of (1+cot^(2)theta)sin^(2)theta.

Prove the following trigonometric identities : cot^2theta-1/(sin^2theta)=-1 (ii) (1+tan^2theta)(1+sintheta)(1-sintheta)=1

(cos^(2)theta-cot^(2)theta+1)/(sin^(2)theta+tan^(2)theta-1)=cot^(2)theta

Prove each of the following identities : (1+ tan^(2) theta)(1+ cot^(2) theta)=(1)/((sin^(2) theta- sin^(4) theta))

Write the value of cot^2theta-1/(sin^2theta) .