Home
Class 12
MATHS
y=((x^(2)-1)^(3)(2x-1))/(sqrt((x-3)(4x-1...

y=((x^(2)-1)^(3)(2x-1))/(sqrt((x-3)(4x-1)))

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(1)/(3)"log" (x+1)/(sqrt(x^(2)-x+1))+(1)/(sqrt(3))"tan"^(-1)(2x-1)/(sqrt(3)) , show that, (dy)/(dx)=(1)/(x^(3)+1)

Integrate the following with respect to x. (1)/((2x+1)^(3))+(3)/(5-2x)+(1)/(sqrt(1-4x^(2)))

y=sqrt(x^(2)-3x+2)+(1)/(sqrt(3+2x-x^(2))) find the domain =?

If y=log sqrt((x^(2)+x+1)/(x^(2)-x+1))+(1)/(2sqrt(3)){tan^(-1)backslash(2x+1)/(sqrt(3))+tan^(-1)backslash(2x-1)/(sqrt(3))} then prove that (dy)/(dx)=(1)/(x^(4)+x^(2)+1)

If y=log sqrt((x^(2)+x+1)/(x^(2)-x+1))+(1)/(2sqrt(3)){tan^(-1)backslash(2x+1)/(sqrt(3))+tan^(-1)backslash(2x-1)/(sqrt(3))} then prove that (dy)/(dx)=(1)/(x^(4)+x^(2)+1)

The equation of tangent to the curve y=int_(x^(2))^(x^(3))(dt)/(sqrt(1+t^(2))) at x=1 is sqrt(3)x+1=y (b) sqrt(2)y+1=x sqrt(3)x+y=1(d)sqrt(2)y=x

If Delta(x)=|{:(4x-4,(x-2)^2,x^3),(8x-4sqrt2,(x-2sqrt2)^2,(x+1)^3),(12x-4sqrt3,(x-2sqrt3)^2,(x-1)^3):}| . Then the coefficient of x in Delta(x) is

y=tan^(-1)""(3x-x^(3))/(2x^(2)-1),-(1)/(sqrt(3))ltxlt(1)/(sqrt(3))

y=tan^(-1)""(3x-x^(3))/(2x^(2)-1),-(1)/(sqrt(3))ltxlt(1)/(sqrt(3))