Home
Class 11
MATHS
Domain of the function f(x) = loge cos^-...

Domain of the function `f(x) = log_e cos^-1 {sqrtx}`, where {.} represents fractional part function

Promotional Banner

Similar Questions

Explore conceptually related problems

Range of the function f (x) = cos^-1 (-{x}) , where {.} is fractional part function, is:

Consider the function f(x)=(cos^(-1)(1-{x}))/(sqrt(2){x}); where {.} denotes the fractional part function,then

The domain of definition of the function f(x)=ln{x}+sqrt(x-2{x}) is: (where { } denotes fractional part function) (A) (1,oo) (B) (0,oo) (C) (1,oo)~I^(+) (D) None of these

find the range of the function f(x)=1/(2{-x})-{x} occurs at x equals where {.} represents the fractional part functional

Domain of function f(x)=ln(x), where {} represents fractional part function.

Find the domain and range of f(f)=log{x}, where {} represents the fractional part function).

The domain of the function f(x)=(1)/(sqrt({x}))-ln(x-2{x}) is (where {.} denotes the fractional part function)

Domain of the function f (x)= (x)/(log _(e) (1+x)) is-