Home
Class 12
MATHS
(|x|-1)/(|x|-2) <= 0 then x lies in the ...

`(|x|-1)/(|x|-2) <= 0` then `x` lies in the interval

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|[1,2(x-1),3(x-1)(x-2)],[x-1,(x-1)(x-2),(x-1)(x-2)(x-3)],[x,x(x-1),x(x-1)(x-2)]| . Then, the value of f(2020) is

If D(x)=det[[(x-1),(x-1)^(2),x^(3)(x-1),x^(2),(x+1)^(3)x,(x+1)^(2),(x+1)^(3) then the coefficient of x in D(x), is ]]

lim_(x rarr1)[(sqrt(x)-1)/(x-1)+(x^(2)-1)/(x^(2)-x)]

Solve the following inequalities ((x-1)(x-2)(x-3))/((x+1)(x+2)(x+3))>1

Solve: ((x-1)(x-2)(x-3))/((x+1)(x+2)(x+3))>1

Solve the following inequalities ((x-1)(x-2)(x-3))/((x+1)(x+2)(x+3))>1

If f(x)=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-1)):}| then

(x+(1)/(x))^(2)-(x-(1)/(x))^(2)=? 1) x^(2)+(1)/(x^(2)) 2) 4 3) 2x^(2)+(1)/(2x^(2)) 4) 2x^(2)+4+(1)/(2x^(2))