Home
Class 12
MATHS
sin^(-1)(2x sqrt(1-x^(2)))=2sin^(-1)x" i...

sin^(-1)(2x sqrt(1-x^(2)))=2sin^(-1)x" is true if "x in

Promotional Banner

Similar Questions

Explore conceptually related problems

(sin^(-1)x)/(sqrt(1-x^(2))

(sin^(-1)x)/(sqrt(1-x^(2))

The formula sin^(-1){2x(1-x^(2))}=2sin^(-1)x is true for all values of x lying in the interval

Prove the following : sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,x in[-1/sqrt2,1/sqrt2]

Prove that : sin^(-1) (2x sqrt(1-x^(2)))= 2 sin^(-1) x, - 1/(sqrt(2)) le x le 1/(sqrt(2))

Prove that : sin^(-1) (2x sqrt(1-x^(2)) ) = 2 sin^(-1) x , -1/(sqrt(2))le x le 1/(sqrt(2)

sin^(-1)x+sin^(-1)sqrt(1-x^(2))

(sin ^(-1) x )/( sqrt( 1 - x ^(2)) )

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

sin^(-1)(2x sqrt(1-x^(2))),x in[(1)/(sqrt(2)),1] is equal to