Home
Class 10
MATHS
If f,\ g,\ h are real functions given by...

If `f,\ g,\ h` are real functions given by `f(x)=x^2,g\ (x)=tanx\ a n d\ h(x)=log,\ x ,\ t h e n` write the value of `(hot\ of)(sqrt(pi/4))dot`

A

`0`

B

`1`

C

`(1)/(x)`

D

`(1)/(2) log((pi)/(4))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f,\ g,\ h are real functions given by f(x)=x^2,g\ (x)=tanx\ a n d\ h(x)=log,\ x ,\ t h e n write the value of (hog\ of)(sqrt(pi/4))dot

Let f,\ g,\ h be real functions given by f(x)=sinx , g(x)=2x and h(x)=cosx . Prove that fog=go(fh)dot

If f,\ g,\ h are real functions defined by f=sqrt(x+1),\ g(x)=1/x\ a n d\ h(x)=2x^2-3, then find the values of (2fg+g-h)(1)\ a n d\ (2f+g-h)(1)dot

If f : R to R, g : R to R and h: R to R is such that f (x) =x ^(2) , g (x) = tan x and h (x) = log x, then the value of [ho(gof),if x = (sqrtpi)/(2) will be

Given f(x)=(1)/(1-x),g(x)=f{f(x)} and h(x)=f{f{f(x)}} then the value of f(x)g(x)h(x) is

If f(x) and g(x) are two real functions such that f(x)+g(x)=e^(x) and f(x)-g(x)=e^(-x) , then

Given f(x) = (1)/((1-x)) , g(x) = f{f(x)} and h(x) = f{f{f(x)}}, then the value of f(x) g(x) h(x) is