Home
Class 10
MATHS
The value of sqrt(p^(-1)q).sqrt(q^(-1)r)...

The value of `sqrt(p^(-1)q).sqrt(q^(-1)r).sqrt(r^(-1) p)` is

A

`-1`

B

`0`

C

`1`

D

`2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sqrt(p^(-1)q).sqt(q^(-1)r).sqrt(r^(-1) p) is

sqrt(x^(p-q))sqrt(x^(q-r))sqrt(x^(r-p))=1

Statement 1. If p=7+tanalpha*tanbeta, q=5+tanbeta*tangamma and r=3=tangamma*tanalpha then the maximum value of sqrt(p)+sqrt(q)+sqrt(r) is 4., Statement 2. tanalpha.tanbeta+tanbeta.tangamma+tangamma*tanalpha=1

If p>q>0 and pr<-1

If ^(-1)sqrt(p)+cos^(-1)sqrt(1-p)+cos^(-1)sqrt(1-q)=(3 pi)/(4) then the value of q is 1(b)(1)/(sqrt(2))(c)(1)/(3)(d)(1)/(3)

if cos^(-1)sqrt(p)+cos^(-1)sqrt(1-p)+cos^(-1)sqrt(1-q)=(3 pi)/(4) then the value of q is (A)1(B)(1)/(sqrt(2))(C)(1)/(3)(D)(1)/(2)

The value of 1/(p + q^(-1) + 1) + 1/(q + r^(-1) + 1) + 1/(1 + r + p^(-1)) given that pqr = 1 is :