Home
Class 10
MATHS
If x = (7+ 4 sqrt(3)) then (x+(1)/(x))= ...

If `x = (7+ 4 sqrt(3))` then `(x+(1)/(x))= ?`

A

`8 sqrt(2)`

B

`14`

C

`49`

D

`48`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x = 7 + 4\sqrt{3} \) and we need to find \( x + \frac{1}{x} \), we can follow these steps: ### Step 1: Find \( \frac{1}{x} \) Given \( x = 7 + 4\sqrt{3} \), we need to calculate \( \frac{1}{x} \): \[ \frac{1}{x} = \frac{1}{7 + 4\sqrt{3}} \] ### Step 2: Rationalize the denominator To rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator, which is \( 7 - 4\sqrt{3} \): \[ \frac{1}{7 + 4\sqrt{3}} \cdot \frac{7 - 4\sqrt{3}}{7 - 4\sqrt{3}} = \frac{7 - 4\sqrt{3}}{(7 + 4\sqrt{3})(7 - 4\sqrt{3})} \] ### Step 3: Simplify the denominator using the difference of squares Using the difference of squares formula \( (a + b)(a - b) = a^2 - b^2 \): \[ (7 + 4\sqrt{3})(7 - 4\sqrt{3}) = 7^2 - (4\sqrt{3})^2 = 49 - 48 = 1 \] Thus, we have: \[ \frac{1}{x} = 7 - 4\sqrt{3} \] ### Step 4: Add \( x \) and \( \frac{1}{x} \) Now we can find \( x + \frac{1}{x} \): \[ x + \frac{1}{x} = (7 + 4\sqrt{3}) + (7 - 4\sqrt{3}) \] ### Step 5: Combine like terms When we combine the terms: \[ = 7 + 4\sqrt{3} + 7 - 4\sqrt{3} = 7 + 7 + (4\sqrt{3} - 4\sqrt{3}) = 14 + 0 = 14 \] ### Final Answer Thus, the value of \( x + \frac{1}{x} \) is: \[ \boxed{14} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = sqrt(7 - 4 sqrt(3)) , then x + (1)/(x) is equal to :

if x=sqrt(7+4sqrt(3)) then x+(1)/(x)

If x=sqrt(7+4sqrt(3)), then x+(1)/(x)=

If x = 7 - 4 sqrt(3) , then sqrt(x) + (1)/(sqrt(x)) is equal to

If x=7-4sqrt(3), then the value of x+(1)/(x) is:

If x=(7-4sqrt(3)), then the value of (x+(1)/(x)) is 3sqrt(3)( b 8sqrt(3)(c)14(d)14+8sqrt(3)