Home
Class 10
MATHS
The value of tan^(-1)(tan(7pi)/6) is...

The value of `tan^(-1)(tan(7pi)/6)` is

A

`(7pi)/6`

B

`(5pi)/3`

C

`pi/6`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan^{-1}(\tan(7\pi/6)) \), we can follow these steps: ### Step 1: Understand the function The function \( \tan^{-1}(x) \) is the inverse of the tangent function. The output of \( \tan^{-1}(x) \) is restricted to the range \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \). ### Step 2: Calculate \( \tan(7\pi/6) \) First, we need to find \( \tan(7\pi/6) \). The angle \( 7\pi/6 \) can be expressed in degrees: \[ 7\pi/6 = 7 \times \frac{180}{\pi} = 210^\circ \] The tangent function has a periodicity of \( \pi \), so we can find the equivalent angle within the range of \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \). ### Step 3: Find the reference angle The reference angle for \( 210^\circ \) is: \[ 210^\circ - 180^\circ = 30^\circ \] Since \( 210^\circ \) is in the third quadrant, where tangent is positive, we have: \[ \tan(210^\circ) = \tan(30^\circ) = \frac{1}{\sqrt{3}} \] ### Step 4: Use the periodicity of tangent Since \( \tan(7\pi/6) = \tan(30^\circ) \), we can express this as: \[ \tan(7\pi/6) = \tan\left(\pi + \frac{\pi}{6}\right) = \tan\left(\frac{\pi}{6}\right) \] Thus, \[ \tan(7\pi/6) = \frac{1}{\sqrt{3}} \] ### Step 5: Find \( \tan^{-1}(\tan(7\pi/6)) \) Now we need to find \( \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) \). The angle whose tangent is \( \frac{1}{\sqrt{3}} \) is: \[ \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \] ### Step 6: Conclusion Since \( \frac{\pi}{6} \) is within the range of \( \tan^{-1} \), we conclude that: \[ \tan^{-1}(\tan(7\pi/6)) = \frac{\pi}{6} \] ### Final Answer Thus, the value of \( \tan^{-1}(\tan(7\pi/6)) \) is \( \frac{\pi}{6} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of tan^(-1)(tan(8*pi/6)) is

Find the value of tan^(-1)("tan"(7pi)/(6))+ cos^(-1)("cos"(7pi)/(6))

2tan^(-1)(tan((7pi)/6))

The value of sin{tan^(-1) (tan 7pi/6) + cos^(-1)(cos 7pi/3)} is _____.

The value of tan^(-1)tan(-6) is

tan^(-1)(tan^(5 pi/6))

Find the value of : tan^(-1){tan(-(7pi)/8)}

tan^(-1)("tan"(7pi)/(5))

Principal value of tan^(-1)[tan((3pi)/(4))] is

Principal value of tan^(-1)[tan((3pi)/4)] is