Home
Class 10
MATHS
If x = 3 + sqrt(8) then (x^(2) + (1)/(x...

If `x = 3 + sqrt(8) ` then `(x^(2) + (1)/(x^(2)))=?`

A

`34`

B

`56`

C

`28`

D

`63`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x = 3 + \sqrt{8} \) and we need to find \( x^2 + \frac{1}{x^2} \), we can follow these steps: ### Step 1: Find \( x + \frac{1}{x} \) First, we need to calculate \( \frac{1}{x} \): \[ \frac{1}{x} = \frac{1}{3 + \sqrt{8}} \] To rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{1}{x} = \frac{1 \cdot (3 - \sqrt{8})}{(3 + \sqrt{8})(3 - \sqrt{8})} \] Calculating the denominator: \[ (3 + \sqrt{8})(3 - \sqrt{8}) = 3^2 - (\sqrt{8})^2 = 9 - 8 = 1 \] Thus, \[ \frac{1}{x} = 3 - \sqrt{8} \] Now we can find \( x + \frac{1}{x} \): \[ x + \frac{1}{x} = (3 + \sqrt{8}) + (3 - \sqrt{8}) = 3 + 3 = 6 \] ### Step 2: Use the identity to find \( x^2 + \frac{1}{x^2} \) We can use the identity: \[ x^2 + \frac{1}{x^2} = \left( x + \frac{1}{x} \right)^2 - 2 \] Substituting the value we found: \[ x^2 + \frac{1}{x^2} = 6^2 - 2 = 36 - 2 = 34 \] ### Final Answer Thus, the value of \( x^2 + \frac{1}{x^2} \) is: \[ \boxed{34} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=3+sqrt(8), find the value of x^(2)+(1)/(x^(2))

If x=3+sqrt(8), find the value of x^(2)+(1)/(x^(2))

If x=3+sqrt(8) , find x^2+(1)/x^(2)

If x=3+sqrt8, then (x^2+1/x^2)=?

If x=1+sqrt(2) ,then show that : (x-(1)/(x))^(3)=8

If x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) , find the value of x^(2) + (1)/(x^(2)) .

If x=sqrt(3)-sqrt(2) then (1)/(x^(3))-x^(3)=

If x=8-sqrt(60), then (1)/(2)[sqrt(x)+(2)/(sqrt(x))]