Home
Class 12
MATHS
[" 1f "|2z-4-2i|=|z|sin((pi)/(4)-arg z)"...

[" 1f "|2z-4-2i|=|z|sin((pi)/(4)-arg z)" ,then locus of "z" is/an "],[[" (i) Ellipse "," (2) Circle "," (3) Parabola "," (4) Pair of straight line "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-2-i|=|z|sin((pi)/(4)-arg z)|, where i=sqrt(-1) ,then locus of z, is

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is

If |2z-4-2i|=|z|sin((pi)/(4)-arg z) then the locus of z represents a conic where eccentricity e is

If arg((z-2)/(z+2))=(pi)/(4) then the locus of z is

If arg((z-1)/(z+1))=(pi)/(2) then the locus of z is

If abs(z-2-i)=abs(z)abs(sin(pi/4-arg"z")) , where i=sqrt(-1) , then locus of z, is

If abs(z-2-i)=abs(z)abs(sin(pi/4-arg"z")) , where i=sqrt(-1) , then locus of z, is

If "|z-i|=1 &"Arg(z)=(pi)/(2)" then the "z" is (1) "-2i" (2) "0" (4) "2i"