Home
Class 12
MATHS
" If "f:R rarr R" is a function satisfyi...

" If "f:R rarr R" is a function satisfying "f(x+y)=f(xy)" for all "x,y in R" and "f((3)/(4))=((3)/(4))," then "f((9)/(16))=

Promotional Banner

Similar Questions

Explore conceptually related problems

If f:R rarr R is a function satisfying f(x+y)=f(xy) for all x,y in Radnf((3)/(4))=(3)/(4), then f((9)/(16))=(3)/(4) b.(9)/(16) c.(sqrt(3))/(2) d.0

If f: R->R is a function satisfying f(x+y)=f(x y) for all x ,y in R and f(3/4)=3/4 , then f(9/(16)) is a. 3/4 b. 9/(16) c. (sqrt(3))/2 d. 0

If f: R->R is a function satisfying f(x+y)=f(x y) for all x ,y in R and f(3/4)=3/4 , then f(9/(16)) is a. 3/4 b. 9/(16) c. (sqrt(3))/2 d. 0

If f: R->R is a function satisfying f(x+y)=f(x y) for all x ,y in R and f(3/4)=3/4,t h e nf(9/(16))= a. 3/4 b. 9/(16) c. (sqrt(3))/2 d. 0

If f:R rarr R satisfies f(x+y)=f(x)+f(y), for all x,y in R and f(1)=2 then sum_(r=1)^(7)f(1)

Let f:R rarr R be a function satisfying condition f(x+y^(3))=f(x)+[f(y)]^(3) for all x,y in R If f'(0)>=0, find f(10)

LEt F:R rarr R is a differntiable function f(x+2y)=f(x)+f(2y)+4xy for all x,y in R

A function f:R rarr R satisfy the equation f(x)f(y)-f(xy)=x+y for all x,y in R and f(y)>0, then

Let f:R rarr R be a differential function satisfy f(x)=f(x-y)f(y)AA x,y in R and f'(0)=a,f'(2)=b then f'(-2)=