Home
Class 12
MATHS
" Je: "[a^(2)+2a,2a+1,1],[2a+1,a+2,1=(a-...

" Je: "[a^(2)+2a,2a+1,1],[2a+1,a+2,1=(a-1)^(3)],[3,3,1]

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following: |[a^2+2a, 2a+1, 1],[2a+1, a+2, 1],[3,3,1]|

|(a^(2)+2a,2a+1,1),(2a+1,a+2,1),(3,3,1)|

Prove that |[a^2+2a,2a+1,1],[2a+1,a+2,1],[3,3,1]|=(a-1)^3

D=|{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}| then,

Using properties of determinant, prove that |{:(a^(2)+2a, 2a+1, 1), (2a+1, a+2, 1), (3, 3, 1):}|=(a-1)^(3)

Show that |{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}|=(a-1)^3

Prove that: {:|(a^2+2a,2a+1,1), (2a+1,a+2,1),(3,3,1)|:}=(a-1)^3 .

Using properties of determinants prove that |{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}|=(a-1)^3

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3