Home
Class 12
MATHS
int(0)^(1)(e^(2x)-1)/(e^(2x)+1)dx=...

int_(0)^(1)(e^(2x)-1)/(e^(2x)+1)dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

6*int_(0)^(1)(e^(2x))/(1+e^(2x))dx

Show that int_(0)^(1)(e^(x))/(1+e^(2x))dx=tan^(-1)(e)-pi/(4)

int_(0)^(1)(e^(x))/((1+e^(2x)))dx

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

int_(0)^(1)(e^(x))/(1+e^(2x))dx

int_(0)^(1)2e^(x)dx

Evaluate the integral as limit of sum: int_(0)^(1) (e^(2x)-e^(x) +x) dx

Evaluate int_(0)^(1) (e^(x))/( 1+ e^(2x)) dx

int_(0)^(1)(e^(x)dx)/(1+e^(x))