Home
Class 12
MATHS
int0^(pi/4)xcosx dx...

`int_0^(pi/4)xcosx dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_0^(pi/2)xcosx dx

Evaluate: int_0^(pi/2)xcosx dx

Evaluate int_0^(pi/2) xcosx dx

Evaluate the following definite integral: int_0^(pi//2)xcosx\ dx

int_0^(pi/4) (cos x- sin x) dx + int_(pi/4)^((5pi)/4) (sinx-cosx) dx + int_(2pi)^(pi/4) (cosx- sinx) dx =

(i) int_0^(pi//4) sec x dx (ii) int_(pi//6)^(pi//4) cosec x dx

int_0^(pi//2)xsinx\ dx is equal to pi//2 b. pi//4 c. pi d. 1

int_0^(pi//2)xsinx\ dx is equal to a. pi//2 b. pi//4 c. pi d. 1

(i) int_0^(pi//4) tan x dx (ii) int_(pi//4)^(pi//2) cot x dx

int_0^(pi/2)sin4xcotx dx is equal to -pi/2 (2) 0 (3) pi/2 (4) pi