Home
Class 12
MATHS
If the circles x^2 + y^2 + 2gx + 2fy + c...

If the circles `x^2 + y^2 + 2gx + 2fy + c = 0` bisects `x^2+y^2+2g'x+2f'y + c' = 0` then the length of the common chord of these two circles is -

Promotional Banner

Similar Questions

Explore conceptually related problems

If the circle x^(2) +y^(2) + 2gx + 2fy + c = 0 bisects the circumference of the circle x^(2) +y^(2) + 2g'x + 2f'y + c' = 0 , them the length of the common chord of these two circles is

If the circle x^(2) +y^(2) + 2gx + 2fy + c = 0 bisects the circumference of the circle x^(2) +y^(2) + 2g'x + 2f'y + c' = 0 , them the length of the common chord of these two circles is

If the circles x ^(2) +y^(2) +2gx +2fy =0 and x ^(2) +y^(2) +2g'x+ 2f'y=0 touch each other then-

If the circle x^(2)+y^(2)-2x-2y-1=0 bisects the circumference of the circle x^(2)+y^(2)=1 then the length of the common chord of the circles is

if the two circles x^2 + y^2 + 2gx + 2fy = 0 and x^2 + y^2 + 2g'x + 2 f'y = 0 touch each other then show that f'g = fg'

If the circle x ^(2) + y^(2) + 2gx + 2fy+ c=0 touches X-axis, then

If the circle x ^(2) + y^(2) + 2gx + 2fy+ c=0 touches X-axis, then

If circles x^(2) + y^(2) + 2gx + 2fy + c = 0 and x^(2) + y^(2) + 2x + 2y + 1 = 0 are orthogonal , then 2g + 2f - c =

If the circle x^(2) + y^(2) + 2gx + 2fy + c = 0 does not intersects the X - axis then ……..