Home
Class 12
MATHS
|n(n-1)(n-2)=1320...

`|n(n-1)(n-2)=1320`

Promotional Banner

Similar Questions

Explore conceptually related problems

1+(n)/(2)+(n(n-1))/(2.4)+(n(n-1) (n-2))/(2.4.6)+…....=

Prove by mathematical induction, n.1+(n-1).2+(n-2).3+…+2.(n-1)+1.n = (n(n+1)(n+2))/6 where n in N .

Prove that 7^(n)(1+(n)/(7)+(n(n-1))/(7.14)+(n(n-1)(n-2))/(7.14.21)...)=4^(n)(1+(n)/(2)+(n(n+1))/(2.4)+(n(n+1)(n+2))/(2.4.6)...)

Prove that 5^(n) (1+(n)/(5) +(n(n-1))/(5*10) +(n(n-1)(n-2))/(5*10*15)+…oo)=3^(n) (1+(n)/(2)+(n(n+1))/(2*4)+(n(n+1)(n+2))/(2*4*6)+…oo)

If n is a non zero rational number then show that 1 + n/2 + (n (n - 1))/(2.4) + (n(n-1)(n - 2))/(2.4.6) + ….. = 1 + n/3 + (n (n + 1))/(3.6) + (n (n + 1) (n + 2))/(3.6.9) + ….

If n is a non zero rational number then show that 1 + n/2 + (n (n - 1))/(2.4) + (n(n-1)(n - 2))/(2.4.6) + ….. = 1 + n/3 + (n (n + 1))/(3.6) + (n (n + 1) (n + 2))/(3.6.9) + ….

For n in N, prove that (n+1)[n!n+(n-1)!(2n-1)+(n-2)!(n-1)]=(n+2)!

For n in N , Prove that (n+1)[n!n+(n-1)!(2n-1)+(n-2)!(n-1)]=(n+2)!

Let S_(n)=1+(1)/(2)+(1)/(3)+….+(1)/(n) Show that ns_(n)=n+((n-1)/(1)+(n-2)/(2)+………+(2)/(n-2)+(1)/(n-1)) .

If ""^(n)P_(3)=1320 , find n.