Home
Class 10
MATHS
" Prove: "cos^(4)A-cos^(2A)=sin^(4)A-sin...

" Prove: "cos^(4)A-cos^(2A)=sin^(4)A-sin^(2)A

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities: cos^(4)A-cos^(2)A=sin^(4)A-sin^(2)A

Prove the following identities: cos^4A-cos^2A=sin^4A-sin^2A

Prove that cos^(4)A-sin^(4)A=cos^(2)A-sin^(2)A .

Prove the following identities: sin^(4)A-cos^(4)A=sin^(2)A-cos^(2)A=2sin^(2)A-1=1-2cos^(2)A

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1, Prove that: sin^(4)A+sin^(4)B=2sin^(2)A sin^(2)B

Prove that sin^(4)x-cos^(4)x=sin^(2)x-cos^(2)x

Prove that sin^(4)x-cos^(4)x=sin^(2)x-cos^(2)x

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1 Prove that :

If (cos^4A)/(cos^2B)+(sin^4A)/(sin^2B)=1 then prove that (cos^4B)/(cos^2A)+(sin^4B)/(sin^2A)=1

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1 then prove that (i)sin^(2)A+sin^(2)B=2sin^(2)A sin^(2)B(ii)(cos^(4)B)/(cos^(2)A)+(sin^(4)B)/(sin^(2)A)=1