Home
Class 12
MATHS
int0^1(2sin^(- 1)(x/2))/x dx is equal to...

`int_0^1(2sin^(- 1)(x/2))/x dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int_(0)^(1)(2sin^(-1)""(x)/(2))/(x)dx equals

int_(0)^(1)(tan^(-1)x)/(x)dx is equals to int_(0)^((pi)/(2))(sin x)/(x)dx(b)int_(0)^((pi)/(2))(x)/(sin x)dx(1)/(2)int_(0)^((pi)/(2))(sin x)/(x)dx(d)(1)/(2)int_(0)^((pi)/(2))(x)/(sin x)dx

If 2int_(0)^(1)tan^(-1)xdx=int_(0)^(1)cot^(-1)(1-x+x^(2))dx then int_(0)^(1)tan^(-1)(1-x-x^(2))dx is equal to

int(sin^(-1)x)/(sqrt(1-x^(2)))dx is equal to

The value of int_0^1(2x^3-3x^2-x+1)^(1/3)dx is equal to

int_(0)^(1) (x^(2))/(1+x^(2))dx is equal to

If 2int_(0)^(1) tan^(-1)xdx=int_(2)^(1)cot^(-1)(1-x+x^(2))dx . Then int_(0)^(1) tan^(-1)(1-x+x^(2))dx is equal to

int_0^oo 1/(1+x^2)dx is equal to :

int_0^(10) |x(x-1)(x-2)| dx is equal to