Home
Class 12
MATHS
y=sqrt((1+e^(x))/(1-e^(x)))...

y=sqrt((1+e^(x))/(1-e^(x)))

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int sqrt((e^(x)-1)/(e^(x)+1))dx

int sqrt((e^(x)-1)/(e^(x)+1))dx is equal to

if y=log(e^(2x)+sqrt(1+e^(4x))) and y_(1)sqrt(1+e^(4x))=me^(mx) then m=

(d)/(dx){sin^(-1)(e^(x))} is equal to (a) e^(x)sin^(-1)(e^(x)) (b) (e^(x))/(sqrt(1-e^(2x))) (c) (e^(x))/(1-e^(x)) (d) e^(x)cos^(-1)x]]

Evaluate: int1/(sqrt(e^(5x))(e^(2x)+e^(-2x))^3)^(1/4)

int(e^xdx)/(sqrt(1-e^(x)))

intsqrt((e^x+1)/(e^x-1))dx (A) ln (e^(x)+sqrt(e^(2x)-1))-sec^(-1)(e^(x)) +C (B) ln(e^(x)+sqrt(e^(2x)-1))+sec^(-1)(e^(x))+C (C) ln (e^(x)-sqrt(e^(2x)-1))-sec^(-1)(e^(x)) +C (D) ln(e^(x)+sqrt(e^(2x)-1))-sin^(-1)(e^(-x))+C

If y = (e^(x)-e^(-x))/(e^(x)+e^(-x)) then prove that y = (e^(2x)-1)/(e^(2x)+1) .