Home
Class 20
MATHS
" The value of "tan^(-1)x+2cot^(-1)x" is...

" The value of "tan^(-1)x+2cot^(-1)x" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of tan^(-1)x+cot^(-1)x is

The value of x if tan^(-1)x + 2 cot^(-1)x = (2 pi)/3 is

The value of cot(tan^(-1)2x+cot^(-1)2x) is ... (A) 0 (B) 2x (C) 4x (D) pi+2x A B C D

Select the correct option from the given alternatives: The value of cot(tan^-1 2x+cot^-1 2x) is A) 0 B) 2x C) pi+2x D) pi-2x

cot(tan^(-1)x+cot^(-1)x)

The value of cot (tan^-1 x + cot^-1 x) is equal to :

STATEMENT -1 : The value of tan^(-1)x+tan^(-1)(1/x)=pi/2, AA x in R -{0} . and STATEMENT -2 : The value of tan^(-1).(1/x)={:{(cot^(-1)x,x gt0),(-pi+cot^(-1)x,x lt0):}

STATEMENT -1 : The value of tan^(-1)x+tan^(-1)(1/x)=pi/2, AA x in R -{0} . and STATEMENT -2 : The value of tan^(-1).(1/x)={:{(cot^(-1)x,x gt0),(-pi+cot^(-1)x,x lt0):}

The value of 2tan^(-1)(cos ec tan^(-1)x-tan cot^(-1)x) is equal to (a)cot ^(-1)x( b ) (cot^(-1)1)/(x) (c)tan ^(-1)x (d) none of these