Home
Class 12
PHYSICS
Find the derivative of (x^(3) - 3x^(2) +...

Find the derivative of `(x^(3) - 3x^(2) + 4)(4x^(5) + x^(2) -1)` :

A

`2x(10 x^(3) + 1)(x^(3) - 3x^(2) + 4) + 3x (x-2)(4x^(5) + x^(2) - 1)`

B

`2x(10 x^(3) +1)(x^(3) + 3x^(2) + 4) + 3x(x-2)(4x^(5) + x^(2)-1)`

C

`2x(10 x^(3) +1)(x^(3) - 3x^(2) + 4) + 3x(x+2)(4x^(5) + x^(2)+1)`

D

`2x(10 x^(3) +1)(x^(3) + 3x^(2) + 4) + 3x(x-2)(4x^(5) + x^(2)+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( f(x) = (x^3 - 3x^2 + 4)(4x^5 + x^2 - 1) \), we will use the product rule of differentiation. The product rule states that if you have two functions \( u(x) \) and \( v(x) \), then the derivative of their product is given by: \[ \frac{d}{dx}[u(x)v(x)] = u'(x)v(x) + u(x)v'(x) \] ### Step 1: Identify the functions Let: - \( u(x) = x^3 - 3x^2 + 4 \) - \( v(x) = 4x^5 + x^2 - 1 \) ### Step 2: Differentiate \( u(x) \) Now we differentiate \( u(x) \): \[ u'(x) = \frac{d}{dx}(x^3) - \frac{d}{dx}(3x^2) + \frac{d}{dx}(4) \] Calculating each term: - \( \frac{d}{dx}(x^3) = 3x^2 \) - \( \frac{d}{dx}(3x^2) = 6x \) - \( \frac{d}{dx}(4) = 0 \) So, \[ u'(x) = 3x^2 - 6x \] ### Step 3: Differentiate \( v(x) \) Next, we differentiate \( v(x) \): \[ v'(x) = \frac{d}{dx}(4x^5) + \frac{d}{dx}(x^2) - \frac{d}{dx}(1) \] Calculating each term: - \( \frac{d}{dx}(4x^5) = 20x^4 \) - \( \frac{d}{dx}(x^2) = 2x \) - \( \frac{d}{dx}(1) = 0 \) So, \[ v'(x) = 20x^4 + 2x \] ### Step 4: Apply the product rule Now we apply the product rule: \[ f'(x) = u'(x)v(x) + u(x)v'(x) \] Substituting the derivatives and the original functions: \[ f'(x) = (3x^2 - 6x)(4x^5 + x^2 - 1) + (x^3 - 3x^2 + 4)(20x^4 + 2x) \] ### Step 5: Simplify the expression Now we can simplify the expression: 1. Expand \( (3x^2 - 6x)(4x^5 + x^2 - 1) \): - \( 3x^2 \cdot 4x^5 = 12x^7 \) - \( 3x^2 \cdot x^2 = 3x^4 \) - \( 3x^2 \cdot (-1) = -3x^2 \) - \( -6x \cdot 4x^5 = -24x^6 \) - \( -6x \cdot x^2 = -6x^3 \) - \( -6x \cdot (-1) = 6x \) Combining these gives: \[ 12x^7 - 24x^6 + 3x^4 - 6x^3 - 3x^2 + 6x \] 2. Expand \( (x^3 - 3x^2 + 4)(20x^4 + 2x) \): - \( x^3 \cdot 20x^4 = 20x^7 \) - \( x^3 \cdot 2x = 2x^4 \) - \( -3x^2 \cdot 20x^4 = -60x^6 \) - \( -3x^2 \cdot 2x = -6x^3 \) - \( 4 \cdot 20x^4 = 80x^4 \) - \( 4 \cdot 2x = 8x \) Combining these gives: \[ 20x^7 - 60x^6 + (2x^4 + 80x^4) - 6x^3 + 8x = 20x^7 - 60x^6 + 82x^4 - 6x^3 + 8x \] ### Step 6: Combine all terms Now combine all the terms from both expansions: \[ f'(x) = (12x^7 + 20x^7) + (-24x^6 - 60x^6) + (3x^4 + 2x^4 + 80x^4) + (-6x^3 - 6x^3) + (6x + 8x) \] This simplifies to: \[ f'(x) = 32x^7 - 84x^6 + 85x^4 - 12x + 14 \] ### Final Result Thus, the derivative of the function \( f(x) \) is: \[ f'(x) = 32x^7 - 84x^6 + 85x^4 - 12x + 14 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the derivative of x^(-4)(3-4x^(-5))

Find the derivative of (5x^(3)+3x-1)(x-1) .

Find the derivative of y=4x^3-3x^2+2x-pi

Find the derivative of (x^(4)+3x^(3)+4x^(2)+2)/(x^(3))

Find the derivative of 2/(x+1)-x^(2)/(3x-1) .

Find the derivative of f(x) =2x^(2)+3x-4 at x=0.

Find the derivative of :-(x^(4)+3x^(3)+4x^(2)+2)/(x^(3))

Find the derivative of f(x) = 2 x^(3) + 3x^(2) + 5x + 9 at x = 2

Find the derivative of (x+3)^(2)*(x+4)^(3)*(x+5)^(4) w.r.t.x

Find the derivative of (tan x+4sin x)(x^(5)+2)