Home
Class 12
PHYSICS
Find (dy)/(dx) if y = 5x^(4) + 6x^(3//2)...

Find `(dy)/(dx)` if `y = 5x^(4) + 6x^(3//2) + 9x`.

A

`20 x^(3) + 9x^(3//2) + 9`

B

`20 x^(3) + 9x^(1//2)`

C

`20x^(3) + 9x^(3//2)`

D

`20x^(3) + 9x^(1//2) + 9`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = 5x^4 + 6x^{3/2} + 9x\), we will differentiate each term with respect to \(x\). ### Step-by-Step Solution: 1. **Differentiate the first term**: \[ y_1 = 5x^4 \] Using the power rule, \(\frac{d}{dx}(x^n) = nx^{n-1}\), we get: \[ \frac{dy_1}{dx} = 5 \cdot 4x^{4-1} = 20x^3 \] 2. **Differentiate the second term**: \[ y_2 = 6x^{3/2} \] Again applying the power rule: \[ \frac{dy_2}{dx} = 6 \cdot \frac{3}{2}x^{(3/2)-1} = 6 \cdot \frac{3}{2}x^{1/2} = 9x^{1/2} \] 3. **Differentiate the third term**: \[ y_3 = 9x \] The derivative of \(x\) is 1, so: \[ \frac{dy_3}{dx} = 9 \cdot 1 = 9 \] 4. **Combine the derivatives**: Now, we can combine the derivatives of all three terms to find \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{dy_1}{dx} + \frac{dy_2}{dx} + \frac{dy_3}{dx} = 20x^3 + 9x^{1/2} + 9 \] Thus, the final result is: \[ \frac{dy}{dx} = 20x^3 + 9x^{1/2} + 9 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

find (dy)/(dx) if y=2(3x-2),x=4

find dy/dx if y = (x^(2) - 4x+5) (x^(3) - 2)

find (dy)/(dx) , if y=3^(x)+2^(x)+5

Find (dy)/(dx) , if y=(6x^(3)-3x^(2) -9x)^(10)

Find (dy)/(dx) , when y=x^(5)+x^(4)+7

Find (dy)/(dx) of y=(x^(2)-5x+8)(x^(3)-7x+9)

Find dy/dx if y=(x^3-2x-1)^5

Find (dy)/(dx) , if y= root(5)((3x^(2) + 8x+ 5)^(4))