Home
Class 12
PHYSICS
Two vector vec(P) = 2hat(i) + bhat(j) + ...

Two vector `vec(P) = 2hat(i) + bhat(j) + 2hat(k)` and `vec(Q) = hat(i) + hat(j) + hat(k)` are perpendicular. The value of b will be :

A

b = 0

B

b = 1

C

b = 2

D

b = -4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( b \) such that the vectors \( \vec{P} \) and \( \vec{Q} \) are perpendicular. ### Step-by-Step Solution: 1. **Identify the Vectors**: \[ \vec{P} = 2\hat{i} + b\hat{j} + 2\hat{k} \] \[ \vec{Q} = \hat{i} + \hat{j} + \hat{k} \] 2. **Use the Condition for Perpendicular Vectors**: Two vectors are perpendicular if their dot product is zero: \[ \vec{P} \cdot \vec{Q} = 0 \] 3. **Calculate the Dot Product**: The dot product \( \vec{P} \cdot \vec{Q} \) is calculated as follows: \[ \vec{P} \cdot \vec{Q} = (2\hat{i} + b\hat{j} + 2\hat{k}) \cdot (\hat{i} + \hat{j} + \hat{k}) \] This expands to: \[ = 2(\hat{i} \cdot \hat{i}) + b(\hat{j} \cdot \hat{j}) + 2(\hat{k} \cdot \hat{k}) \] Since \( \hat{i} \cdot \hat{i} = 1 \), \( \hat{j} \cdot \hat{j} = 1 \), and \( \hat{k} \cdot \hat{k} = 1 \), we have: \[ = 2(1) + b(1) + 2(1) = 2 + b + 2 \] Simplifying this gives: \[ = 4 + b \] 4. **Set the Dot Product to Zero**: Since the vectors are perpendicular: \[ 4 + b = 0 \] 5. **Solve for \( b \)**: Rearranging the equation gives: \[ b = -4 \] ### Final Answer: The value of \( b \) is \( -4 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lambda for which the two vectors vec(a) = 5hat(i) + lambda hat(j) + hat(k) and vec(b) = hat(i) - 2hat(j) + hat(k) are perpendicular to each other is :

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find 'lambda' when the vectors : vec(a)=2hat(i)+lambda hat(j)+hat(k) and vec(b)=hat(i)-2hat(j)+3hat(k) are perpendicular to each other.

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals

Consider three vectors vec(A)=2 hat(i)+3 hat(j)-2 hat(k)" " vec(B)=5hat(i)+nhat(j)+hat(k)" " vec(C)=-hat(i)+2hat(j)+3 hat(k) If these three vectors are coplanar, then value of n will be