Home
Class 12
PHYSICS
For a body, angular velocity (vec(omega)...

For a body, angular velocity `(vec(omega)) = hat(i) - 2hat(j) + 3hat(k)` and radius vector `(vec(r )) = hat(i) + hat(j) + vec(k)`, then its velocity is :

A

`-5hat(i) + 2hat(j) + 3hat(k)`

B

`-5hat(i) + 2hat(j) - 3hat(k)`

C

`-5hat(i) - 2hat(j) + 3hat(k)`

D

`-5hat(i) - 2hat(j) - 3hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the velocity of a body given its angular velocity \(\vec{\omega}\) and radius vector \(\vec{r}\), we use the formula for linear velocity \(\vec{v}\) which is given by the cross product of the angular velocity vector and the radius vector: \[ \vec{v} = \vec{\omega} \times \vec{r} \] ### Step 1: Write down the vectors Given: \[ \vec{\omega} = \hat{i} - 2\hat{j} + 3\hat{k} \] \[ \vec{r} = \hat{i} + \hat{j} + \hat{k} \] ### Step 2: Set up the cross product We can represent the cross product using a determinant: \[ \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 3 \\ 1 & 1 & 1 \end{vmatrix} \] ### Step 3: Calculate the determinant To calculate the determinant, we expand it as follows: \[ \vec{v} = \hat{i} \begin{vmatrix} -2 & 3 \\ 1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 3 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -2 \\ 1 & 1 \end{vmatrix} \] ### Step 4: Calculate each of the 2x2 determinants 1. For \(\hat{i}\): \[ \begin{vmatrix} -2 & 3 \\ 1 & 1 \end{vmatrix} = (-2)(1) - (3)(1) = -2 - 3 = -5 \] 2. For \(\hat{j}\): \[ \begin{vmatrix} 1 & 3 \\ 1 & 1 \end{vmatrix} = (1)(1) - (3)(1) = 1 - 3 = -2 \] 3. For \(\hat{k}\): \[ \begin{vmatrix} 1 & -2 \\ 1 & 1 \end{vmatrix} = (1)(1) - (-2)(1) = 1 + 2 = 3 \] ### Step 5: Substitute back into the equation Now substituting these results back into the equation for \(\vec{v}\): \[ \vec{v} = -5\hat{i} - (-2)\hat{j} + 3\hat{k} \] \[ \vec{v} = -5\hat{i} + 2\hat{j} + 3\hat{k} \] ### Final Answer Thus, the velocity vector is: \[ \vec{v} = -5\hat{i} + 2\hat{j} + 3\hat{k} \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The angular velocity of a body is vec(omega)= 2hat(i) + 3hat(j) + 4hat(k) and a torque vec(tau)= hat(i) + 2hat(j) + 3hat(k) acts on it. The rotational power will be

The angular velocity of a body is vec (omega)- = 2 hat(i) + 3 hat(j) + 4 hat (k) and torque hat(tau) = hat(i) + 2 hat(j) + 3 hat(k) acts on it. The rotational power will be

Knowledge Check

  • The linear velocity of a rotating body is given by vec(v)= vec(omega)xxvec(r ) , where vec(omega) is the angular velocity and vec(r ) is the radius vector. The angular velocity of a body is vec(omega)= hat(i)-2hat(j)+2hat(k) and the radius vector vec(r )= 4hat(j)-3hat(k) , then |vec(v)| is

    A
    `sqrt(29) units`
    B
    `sqrt(31)unit`
    C
    `sqrt(37)unit`
    D
    `sqrt(41)unit`
  • What is the value of linear velocity, if vec(omega) = 3hat(i)-4 hat(j) + hat(k) and vec(r) = 5hat(i)-6hat(j)+6hat(k)

    A
    `6hat(i)+2hat(j)-3hat(k)`
    B
    `-18 hat(i)-13hat(j)+2hat(k)`
    C
    `4hat(i)-13hat(j)+6hat(k)`
    D
    `6hat(i)-2hat(j)+8hat(k)`
  • The linear velocity of a rotating body is given by vec(v)=vec(omega)xxvec(r) , where vec(omega) is the angular velocity and vec(r) is the radius vector. The angular velocity of a body is vec(omega)=hat(i)-2hat(j)+2hat(k) and the radius vector vec(r)=4hat(j)-3hat(k) , then |vec(v)| is-

    A
    `sqrt(29)` units
    B
    `sqrt(31)` units
    C
    `sqrt(37)` units
    D
    `sqrt(41)` units
  • Similar Questions

    Explore conceptually related problems

    What is the value of linear velocity. If vec(omega)=3hat(i)-4hat(j)+hat(k)and vec(r)=5hat(i)-6hat(j)+6hat(k) ?

    If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

    If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

    Linear momentum vec(P)=2hat(i)+4hat(j)+5hat(k) and position vector is vec(r)=3hat(i)-hat(j)+2hat(k) , the angular momentum is given by

    If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?