Home
Class 12
PHYSICS
The position vectors of points A, B, C a...

The position vectors of points A, B, C and D are :
`vec(A) = 3hat(i) + 4hat(j) + 5hat(k), vec(B) = 4hat(i) + 5hat(j) + 6hat(k)`
`vec(C ) = 7hat(i) + 9hat(j) + 3hat(k)` and `vec(D) = 4hat(i) + 6hat(j)`
Then the displacement vectors `vec(AB)` and `vec(CD)` are :

A

perpendicular

B

parallel

C

anti-parallel

D

inclined at an angle of `60^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the displacement vectors \(\vec{AB}\) and \(\vec{CD}\) given the position vectors of points A, B, C, and D, we will follow these steps: ### Step 1: Write down the position vectors The position vectors are given as: - \(\vec{A} = 3\hat{i} + 4\hat{j} + 5\hat{k}\) - \(\vec{B} = 4\hat{i} + 5\hat{j} + 6\hat{k}\) - \(\vec{C} = 7\hat{i} + 9\hat{j} + 3\hat{k}\) - \(\vec{D} = 4\hat{i} + 6\hat{j}\) ### Step 2: Calculate the displacement vector \(\vec{AB}\) The displacement vector \(\vec{AB}\) is calculated as: \[ \vec{AB} = \vec{B} - \vec{A} \] Substituting the values: \[ \vec{AB} = (4\hat{i} + 5\hat{j} + 6\hat{k}) - (3\hat{i} + 4\hat{j} + 5\hat{k}) \] Calculating component-wise: \[ \vec{AB} = (4 - 3)\hat{i} + (5 - 4)\hat{j} + (6 - 5)\hat{k} \] \[ \vec{AB} = 1\hat{i} + 1\hat{j} + 1\hat{k} \] ### Step 3: Calculate the displacement vector \(\vec{CD}\) The displacement vector \(\vec{CD}\) is calculated as: \[ \vec{CD} = \vec{D} - \vec{C} \] Substituting the values: \[ \vec{CD} = (4\hat{i} + 6\hat{j}) - (7\hat{i} + 9\hat{j} + 3\hat{k}) \] Calculating component-wise: \[ \vec{CD} = (4 - 7)\hat{i} + (6 - 9)\hat{j} + (0 - 3)\hat{k} \] \[ \vec{CD} = -3\hat{i} - 3\hat{j} - 3\hat{k} \] ### Step 4: Summary of the displacement vectors Thus, we have: \[ \vec{AB} = 1\hat{i} + 1\hat{j} + 1\hat{k} \] \[ \vec{CD} = -3\hat{i} - 3\hat{j} - 3\hat{k} \] ### Step 5: Determine the relationship between \(\vec{AB}\) and \(\vec{CD}\) To determine the relationship (whether they are parallel, anti-parallel, or perpendicular), we can calculate the dot product: \[ \vec{AB} \cdot \vec{CD} = (1)(-3) + (1)(-3) + (1)(-3) = -3 - 3 - 3 = -9 \] Next, we check the magnitudes: \[ |\vec{AB}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} \] \[ |\vec{CD}| = \sqrt{(-3)^2 + (-3)^2 + (-3)^2} = \sqrt{27} = 3\sqrt{3} \] ### Step 6: Check for anti-parallel condition For two vectors to be anti-parallel, the dot product should equal the negative product of their magnitudes: \[ \vec{AB} \cdot \vec{CD} = -|\vec{AB}| \cdot |\vec{CD}| \] Calculating: \[ -|\vec{AB}| \cdot |\vec{CD}| = -(\sqrt{3})(3\sqrt{3}) = -9 \] Since both sides are equal, we conclude that \(\vec{AB}\) and \(\vec{CD}\) are anti-parallel. ### Final Answer \[ \vec{AB} = 1\hat{i} + 1\hat{j} + 1\hat{k}, \quad \vec{CD} = -3\hat{i} - 3\hat{j} - 3\hat{k} \] The vectors \(\vec{AB}\) and \(\vec{CD}\) are anti-parallel.
Promotional Banner

Similar Questions

Explore conceptually related problems

The position vectors of points A, B , C and D are vec(A) = 3hat(i) + 4hat(j) + 5hat(k), vec(B) = 4hat(i)+5hat(j) + 6hat(k), vec(C )= 7hat(i) + 9hat(j) + 3hat(k) and vec(D) = 4hat(i) + 6hat(j) then the displacement vectors bar(AB) and bar(CD) are :

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

The three vector vec(A) = 3hat(i)-2hat(j)+hat(k), vec(B)= hat(i)-3hat(j)+5hat(k) and vec(C )= 2hat(i)+hat(j)-4hat(k) from

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(A)=-2hat(i)+3hat(j)-4hat(k)and vec(B)=3hat(i)-4hat(j)+5hat(k) then vec(A)xxvec(B) is

Find the sum of the vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) , and vec(c )=hat(i)-6hat(j)-7hat(k) .

The angle between two vectors vec(A)= 3hat(i)+4hat(j)+5hat(k) and vec(B)= 3hat(i)+4hat(j)+5hat(k) is

Find th esine of angles between vectors vec(a)= 2hat(i) - 6hat(j) - 3hat(k), and vec(b) = 4hat(i) + 3hat(j)- hat(k) ?

Show that the vectors : vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=-2hat(i)+3hat(j)-4hat(k) and vec(c )=hat(i)-3hat(j)+5hat(k) are coplanar.