Home
Class 12
PHYSICS
Three vectors vec(A) = 2hat(i) - hat(j) ...

Three vectors `vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k)`, and `vec(C ) = 3hat(i) - 4hat(j) - 4hat(k)` are sides of an :

A

equilateral triangle

B

right angled triangle

C

isosceles triangle

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine if the vectors \(\vec{A}\), \(\vec{B}\), and \(\vec{C}\) represent the sides of a triangle, we will first calculate the magnitudes of each vector and then check if they satisfy the conditions for a right triangle. ### Step 1: Calculate the magnitude of \(\vec{A}\) Given: \[ \vec{A} = 2\hat{i} - \hat{j} + \hat{k} \] The magnitude of \(\vec{A}\) is calculated as: \[ |\vec{A}| = \sqrt{(2)^2 + (-1)^2 + (1)^2} = \sqrt{4 + 1 + 1} = \sqrt{6} \] ### Step 2: Calculate the magnitude of \(\vec{B}\) Given: \[ \vec{B} = \hat{i} - 3\hat{j} - 5\hat{k} \] The magnitude of \(\vec{B}\) is calculated as: \[ |\vec{B}| = \sqrt{(1)^2 + (-3)^2 + (-5)^2} = \sqrt{1 + 9 + 25} = \sqrt{35} \] ### Step 3: Calculate the magnitude of \(\vec{C}\) Given: \[ \vec{C} = 3\hat{i} - 4\hat{j} - 4\hat{k} \] The magnitude of \(\vec{C}\) is calculated as: \[ |\vec{C}| = \sqrt{(3)^2 + (-4)^2 + (-4)^2} = \sqrt{9 + 16 + 16} = \sqrt{41} \] ### Step 4: Check if the triangle is a right triangle To check if the triangle formed by these vectors is a right triangle, we need to see if the Pythagorean theorem holds. The largest magnitude will be considered as the hypotenuse. 1. Identify the largest magnitude: - \(|\vec{C}| = \sqrt{41}\) (largest) - \(|\vec{B}| = \sqrt{35}\) - \(|\vec{A}| = \sqrt{6}\) 2. Check the Pythagorean theorem: \[ |\vec{C}|^2 = |\vec{A}|^2 + |\vec{B}|^2 \] Substituting the values: \[ 41 = 6 + 35 \] \[ 41 = 41 \quad \text{(True)} \] ### Conclusion Since the Pythagorean theorem holds, the vectors \(\vec{A}\), \(\vec{B}\), and \(\vec{C}\) represent the sides of a right triangle.
Promotional Banner

Similar Questions

Explore conceptually related problems

The three vector vec(A) = 3hat(i)-2hat(j)+hat(k), vec(B)= hat(i)-3hat(j)+5hat(k) and vec(C )= 2hat(i)+hat(j)-4hat(k) from

Given the three vectors vec(a) = - 2hati + hat(j) + hat(k), vec(b) = hat(i) + 5hat(j) and vec(c) = 4hat(i) + 4hat(j) - 2hat(k) . The projection of the vector 3vec(a) - 2vec(b) on the vector vec(c) is

If vec(a) = hat(i) - hat(j) + hat(k). vec(b) = 2hat(i) + 3hat(j) + 2hat(k) and vec(c ) = hat(i) + m hat(j) + n hat(k) are three coplanar vectors and |vec(c )| = sqrt6 , then which one of the following is correct?

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

a. Prove that the vector vec(A)=3hat(i)-2hat(j)+hat(k) , vec(B)=hat(i)-3hat(j)+5hat(k), and vec(C )=2hat(i)+hat(j)-4hat(k) from a right -angled triangle. b. Determine the unit vector parallel to the cross product of vector vec(A)=3hat(i)-5hat(j)+10hat(k) & =vec(B)=6hat(i)+5hat(j)+2hat(k).

Show that the vectors : vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=-2hat(i)+3hat(j)-4hat(k) and vec(c )=hat(i)-3hat(j)+5hat(k) are coplanar.

Find the volume of the parallelepiped whose edges are represented by the vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)), vec(b)=(hat(i)+2hat(j)-hat(k)) and vec(c)=(3hat(i)-hat(j)+2hat(k)) .

For what value of 'lambda' are the following vectors coplanar ? vec(a)=2hat(i)-4hat(j)+5hat(k), vec(b)=hat(i)-lambda hat(j)+hat(k) and vec(c )= 3hat(i)+2hat(j)-5hat(k) .

Find the area of the parallelogram whose adjacent sides are represented by the vectors (i) vec(a)=hat(i) + 2 hat(j)+ 3 hat(k) and vec(b)=-3 hat(i)- 2 hat(j) + hat(k) (ii) vec(a)=(3 hat(i)+hat(j) + 4 hat(k)) and vec(b)= ( hat(i)- hat(j) + hat(k)) (iii) vec(a) = 2 hat(i)+ hat(j) +3 hat(k) and vec(b)= hat(i)-hat(j) (iv) vec(b)= 2 hat(i) and vec(b) = 3 hat(j).

verify that vec(a) xx (vec(b)+ vec(c))=(vec(a) xx vec(b))+(vec(a) xx vec(c)) , "when" (i) vec(a)= hat(i)- hat(j)-3 hat(k), vec(b)= 4 hat(i)-3 hat(j) + hat(k) and vec(c)= 2 hat(i) - hat(j) + 2 hat(k) (ii) vec(a)= 4 hat(i)-hat(j)+hat(k), vec(b)= hat(i)+hat(j)+ hat(k) and vec(c)= hat(i)- hat(j)+hat(k).