Home
Class 12
PHYSICS
Two vector vec(A) and vec(B) have equal ...

Two vector `vec(A)` and `vec(B)` have equal magnitudes. Then the vector `vec(A) + vec(B)` is perpendicular :

A

`vec(A) xx vec(B)`

B

`vec(A) - vec(B)`

C

`3vec(A) - 3vec(B)`

D

All of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine if the vector sum of two equal magnitude vectors \( \vec{A} \) and \( \vec{B} \) is perpendicular to another vector. We will analyze the situation step by step. ### Step-by-Step Solution: 1. **Understanding the Vectors**: Given that \( |\vec{A}| = |\vec{B}| \), we can denote their common magnitude as \( k \). Thus, we have: \[ |\vec{A}| = k \quad \text{and} \quad |\vec{B}| = k \] 2. **Finding the Resultant Vector**: The resultant vector \( \vec{R} \) is given by: \[ \vec{R} = \vec{A} + \vec{B} \] 3. **Using the Dot Product for Perpendicularity**: To check if \( \vec{R} \) is perpendicular to \( \vec{A} - \vec{B} \), we can use the dot product: \[ \vec{R} \cdot (\vec{A} - \vec{B}) = 0 \] 4. **Calculating the Dot Product**: Substitute \( \vec{R} \) into the dot product: \[ (\vec{A} + \vec{B}) \cdot (\vec{A} - \vec{B}) = \vec{A} \cdot \vec{A} - \vec{A} \cdot \vec{B} + \vec{B} \cdot \vec{A} - \vec{B} \cdot \vec{B} \] Simplifying this gives: \[ |\vec{A}|^2 - |\vec{B}|^2 + \vec{A} \cdot \vec{B} - \vec{B} \cdot \vec{A} \] 5. **Substituting Magnitudes**: Since \( |\vec{A}| = |\vec{B}| = k \): \[ |\vec{A}|^2 = k^2 \quad \text{and} \quad |\vec{B}|^2 = k^2 \] Therefore, we have: \[ k^2 - k^2 + \vec{A} \cdot \vec{B} - \vec{B} \cdot \vec{A} = 0 \] This simplifies to: \[ 0 + 0 = 0 \] 6. **Conclusion**: Since the dot product \( \vec{R} \cdot (\vec{A} - \vec{B}) = 0 \), it follows that \( \vec{R} \) is indeed perpendicular to \( \vec{A} - \vec{B} \). ### Final Answer: The vector \( \vec{A} + \vec{B} \) is perpendicular to \( \vec{A} - \vec{B} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

The vectors vec(a) and vec(b) are perpendicular if :

Two vectors vec(A) and vec(B) have precisely equal magnitudes. For the magnitude of vec(A) + vec(B) to be larger than the magnitude of vec(A)-vec(B) by a factor of n , what must be the angle between them?

Two vectors vec A and vec B have equal magnitudes.The magnitude of (vec A+vec B) is 'n' times the magnitude of (vec A-vec B).The angle between vec A and vec B is:

Two vector vec(V)andvec(V) have equal magnitudes. If magnitude of vec(A)+vec(B) is equal to n time the magnitude of vec(A)-vec(B) , then angel to between vec(A) and vec(B) is

Two vectors vec(A) and vec(B) lie in X-Y plane. The vector vec(B) is perpendicular to vector vec(A) . If vec(A) = hat(i) + hat(j) , then vec(B) may be :

Two vectors vec A and vec B have equal magnitudes.If magnitude of (vec A+vec B) is equal to n xx of the magnitude of (vec A-vec B) then the angle between vec A and vec B is :

Two vectors vec A and vec B have equal magnitudes. If magnitude of vec A-vec B is equal to (n) times the magnitude of vec A-vec B , then angle between vec A and vec B is ?

Two vectors vec(A) and vec(B) have magnitudes 2 and 2sqrt(2) respectively. It is found that vec(A).vec(B) = |vec(A) xx vec(B)| , then the value of |(vec(A)+vec(B))/(vec(A)-vec(B))| will be :

Two vectors vec(a) and vec(b) are perpendicular to each other if vec(a).vec(b)=0 .

The magnitude of the vectors vec(a) and vec(b) are equal and the angle between the is 60^(@) the vectors lamda vec(a) + vec(b) and vec(a)- lamda vec(b) are perpendicular to each other them what is the value of lamda ?