Home
Class 12
PHYSICS
If vec(F) = (60 hat(i) + 15hat(j) - 3hat...

If `vec(F) = (60 hat(i) + 15hat(j) - 3hat(k))` and `vec(v) = (2hat(i) - 4hat(j) + 5hat(k))m//s`, then instantaneous power is :

A

195 watt

B

45 watt

C

75 watt

D

100 watt

Text Solution

AI Generated Solution

The correct Answer is:
To find the instantaneous power given the force vector \(\vec{F}\) and the velocity vector \(\vec{v}\), we can use the formula for instantaneous power: \[ P = \vec{F} \cdot \vec{v} \] where \(P\) is the instantaneous power, \(\vec{F}\) is the force vector, and \(\vec{v}\) is the velocity vector. The dot product of two vectors is calculated as follows: \[ \vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z \] ### Step-by-step Solution: 1. **Identify the vectors:** - Force vector: \(\vec{F} = 60 \hat{i} + 15 \hat{j} - 3 \hat{k}\) - Velocity vector: \(\vec{v} = 2 \hat{i} - 4 \hat{j} + 5 \hat{k}\) 2. **Calculate the dot product:** - The dot product \(\vec{F} \cdot \vec{v}\) is calculated as follows: \[ P = (60 \hat{i} + 15 \hat{j} - 3 \hat{k}) \cdot (2 \hat{i} - 4 \hat{j} + 5 \hat{k}) \] 3. **Compute each component:** - For the \(\hat{i}\) components: \[ 60 \cdot 2 = 120 \] - For the \(\hat{j}\) components: \[ 15 \cdot (-4) = -60 \] - For the \(\hat{k}\) components: \[ -3 \cdot 5 = -15 \] 4. **Combine the results:** - Now, sum the results of the dot product: \[ P = 120 - 60 - 15 \] \[ P = 120 - 60 = 60 \] \[ P = 60 - 15 = 45 \] 5. **Final answer:** - Therefore, the instantaneous power is: \[ P = 45 \text{ watts} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(F ) = (60 hat(i) + 15 hat(j) - 3 hat(k)) N and vec(V) = (2 hat(i) - 4 hat(j) + 5 hat(k)) m/s, then instantaneous power is:

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

If vec(a) = 2hat(i) + hat(j) + 2hat(k), vec(b) = 5hat(i) - 3hat(j) + hat(k) , then projection of vec(a) on vec(b) is

If vec(A)=-2hat(i)+3hat(j)-4hat(k)and vec(B)=3hat(i)-4hat(j)+5hat(k) then vec(A)xxvec(B) is

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(a)=(hat(i)-hat(j)+2hat(k)) and vec(b)=(2hat(i)+3hat(j)-4hat(k)) then |vec(a)xx vec(b)|=?

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

verify that vec(a) xx (vec(b)+ vec(c))=(vec(a) xx vec(b))+(vec(a) xx vec(c)) , "when" (i) vec(a)= hat(i)- hat(j)-3 hat(k), vec(b)= 4 hat(i)-3 hat(j) + hat(k) and vec(c)= 2 hat(i) - hat(j) + 2 hat(k) (ii) vec(a)= 4 hat(i)-hat(j)+hat(k), vec(b)= hat(i)+hat(j)+ hat(k) and vec(c)= hat(i)- hat(j)+hat(k).