Home
Class 12
PHYSICS
The direction cosines of a vector hat(i)...

The direction cosines of a vector `hat(i) + hat(j) + sqrt(2)hat(k)` are :

A

`(1)/(2),(1)/(2),1`

B

`(1)/(sqrt(2)),(1)/(sqrt(2)),(1)/(2)`

C

`(1)/(2),(1)/(2),(1)/(sqrt(2))`

D

`(1)/(sqrt(2)),(1)/(sqrt(2)),(1)/(sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the direction cosines of the vector \(\hat{i} + \hat{j} + \sqrt{2}\hat{k}\), we will follow these steps: ### Step 1: Identify the components of the vector The vector can be expressed in component form as: \[ \vec{A} = (1, 1, \sqrt{2}) \] where: - \(A_x = 1\) (coefficient of \(\hat{i}\)) - \(A_y = 1\) (coefficient of \(\hat{j}\)) - \(A_z = \sqrt{2}\) (coefficient of \(\hat{k}\)) ### Step 2: Calculate the magnitude of the vector The magnitude \( |\vec{A}| \) of the vector is given by: \[ |\vec{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2} \] Substituting the values: \[ |\vec{A}| = \sqrt{1^2 + 1^2 + (\sqrt{2})^2} = \sqrt{1 + 1 + 2} = \sqrt{4} = 2 \] ### Step 3: Calculate the direction cosines The direction cosines \( \cos \alpha, \cos \beta, \cos \gamma \) are defined as: \[ \cos \alpha = \frac{A_x}{|\vec{A}|}, \quad \cos \beta = \frac{A_y}{|\vec{A}|}, \quad \cos \gamma = \frac{A_z}{|\vec{A}|} \] Substituting the values we found: - For \( \cos \alpha \): \[ \cos \alpha = \frac{1}{2} \] - For \( \cos \beta \): \[ \cos \beta = \frac{1}{2} \] - For \( \cos \gamma \): \[ \cos \gamma = \frac{\sqrt{2}}{2} \] ### Step 4: Write the direction cosines Thus, the direction cosines of the vector \(\hat{i} + \hat{j} + \sqrt{2}\hat{k}\) are: \[ \cos \alpha = \frac{1}{2}, \quad \cos \beta = \frac{1}{2}, \quad \cos \gamma = \frac{\sqrt{2}}{2} \] ### Final Answer The direction cosines are: \[ \left( \frac{1}{2}, \frac{1}{2}, \frac{\sqrt{2}}{2} \right) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

What are the direction cosines of the vector (2hat(i)+ hat(j) -2hat(k)) ?

If l, m, n are direction cosines of a line then l hat(i) + m hat(j) + n hat(k) is________

Writhe the direction cosines of the vectors -2hat i+hat j-5hat k

Direction - cosines of vec(a)=hat(i)+hat(j)-2hat(k) are :

Write the direction cosines of the vector -2hat i+hat j-5hat k

Writhe the direction cosines of the vector hat i+2hat j+3hat k

Find the direction cosines of the vector hat i+2hat j+3hat k

Find the direction cosines of the vector hat i+2hat j+3hat k.

Find the component of hat(i) in the direction of vector hat(i)+hat(j)+2hat(k) .

Find the unit vector in the direction of the sum of the vectors : vec(a) = 2hat(i)-hat(j)+2hat(k) and vec(b)=-hat(i)+hat(j)+3hat(k) .