Home
Class 12
PHYSICS
If x = (t^(3))/(3) - (5)/(2)t^(2) + 6t +...

If `x = (t^(3))/(3) - (5)/(2)t^(2) + 6t + 1`, then the value `(d^(2)x)/(d t^(2))`, when `(dx)/(d t)` is zero is :

A

`+- 1`

B

`+-2`

C

`+- 3`

D

`+- 4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given function: \[ x = \frac{t^3}{3} - \frac{5}{2}t^2 + 6t + 1 \] ### Step 1: Differentiate \( x \) with respect to \( t \) To find \( \frac{dx}{dt} \), we differentiate \( x \): \[ \frac{dx}{dt} = \frac{d}{dt}\left(\frac{t^3}{3}\right) - \frac{d}{dt}\left(\frac{5}{2}t^2\right) + \frac{d}{dt}(6t) + \frac{d}{dt}(1) \] Calculating each term: - The derivative of \( \frac{t^3}{3} \) is \( t^2 \). - The derivative of \( -\frac{5}{2}t^2 \) is \( -5t \). - The derivative of \( 6t \) is \( 6 \). - The derivative of \( 1 \) is \( 0 \). So, we have: \[ \frac{dx}{dt} = t^2 - 5t + 6 \] ### Step 2: Set \( \frac{dx}{dt} = 0 \) We need to find the values of \( t \) for which \( \frac{dx}{dt} = 0 \): \[ t^2 - 5t + 6 = 0 \] ### Step 3: Factor the quadratic equation We can factor the quadratic: \[ (t - 2)(t - 3) = 0 \] Thus, the solutions are: \[ t = 2 \quad \text{and} \quad t = 3 \] ### Step 4: Differentiate \( \frac{dx}{dt} \) to find \( \frac{d^2x}{dt^2} \) Next, we differentiate \( \frac{dx}{dt} \) to find \( \frac{d^2x}{dt^2} \): \[ \frac{d^2x}{dt^2} = \frac{d}{dt}(t^2 - 5t + 6) \] Calculating the derivative: - The derivative of \( t^2 \) is \( 2t \). - The derivative of \( -5t \) is \( -5 \). - The derivative of \( 6 \) is \( 0 \). So, we have: \[ \frac{d^2x}{dt^2} = 2t - 5 \] ### Step 5: Evaluate \( \frac{d^2x}{dt^2} \) at \( t = 2 \) and \( t = 3 \) Now we will evaluate \( \frac{d^2x}{dt^2} \) at the points \( t = 2 \) and \( t = 3 \): 1. For \( t = 2 \): \[ \frac{d^2x}{dt^2} = 2(2) - 5 = 4 - 5 = -1 \] 2. For \( t = 3 \): \[ \frac{d^2x}{dt^2} = 2(3) - 5 = 6 - 5 = 1 \] ### Final Result Thus, the values of \( \frac{d^2x}{dt^2} \) when \( \frac{dx}{dt} = 0 \) are: - At \( t = 2 \): \( -1 \) - At \( t = 3 \): \( 1 \)
Promotional Banner

Similar Questions

Explore conceptually related problems

If s=(t^(3))/(3)-(1)/(2)t^(2)-6t+5 , Find the value of (d^(2)s)/(dt^(2)) at t=1

If sin x=(2t)/(1+t^(2)) and cot y=(1-t^(2))/(2t) then the value of (d^(2)x)/(dy^(2))=

If x = e^(t) sin t and y = e^(t) cos t, t is a parameter , then the value of (d^(2) x)/( dy^(2)) + (d^(2) y)/(dx^(2)) at t = 0 , is :

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

x=t cos t,y=t+sin t. Then (d^(2)x)/(dy^(2)) at t=(pi)/(2) is

If x = 2 cos t - cos 2t , y = 2 sin t - sin 2t , then the value of |(d^(2) y)/(dx^(2))|_(t= pi//2 ) is

If x=a(sin t-t cos t),y=a sin t then find the value of (d^(2)y)/(dx^(2))

If x = 3 tant and y = 3 sec t, then the value of (d^2y)/(dx^2)" at" t=pi/4 is